首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
通过考察水与表面活性剂的摩尔比(R),TEOS的量、氨水的量及包壳次数对基于Triton X - 100/环已烷/正已醇/水反相微乳液体系制备二氧化硅纳米颗粒尺寸的影响,开展了基于反相微乳液法的尺寸可控性二氧化硅纳米颗粒制备研究.结果表明:在其他参数都恒定的情况下,通过改变微乳液体系中上述某一组分的量,可以在一定程度上实现二氧化硅纳米颗粒的尺寸可控性合成.首先,水与表面活性剂的摩尔比(R)对二氧化硅纳米颗粒的尺寸影响最大,随着R值的增大,颗粒的粒径逐渐减小,当R值达到18时,二氧化硅纳米颗粒的形貌变得不再是很规则的球形结构,并且分散性降低,团聚现象明显;其次是氨水的量,随着氨水量的增多,颗粒的粒径先减小,之后不再发生明显变化;另外随着包壳次数的增多,颗粒的粒径随之增大,并且颗粒之间的分散性也有所提高;但是TEOS的量对颗粒粒径的影响不明显.  相似文献   

2.
反相微乳液法制备纳米金属银粉   总被引:9,自引:0,他引:9       下载免费PDF全文
研究在环己烷 异戊醇 SDS(十二烷基硫酸钠) 水所组成的反相微乳液体系里制备纳米金属银粉的方法.选择合适的微乳液配比,以水合肼为还原剂,常温下还原银铵盐制得了纳米银粒子.讨论了微乳液体系的组成,水和表面活性剂SDS的摩尔比对纳米银粒子粒径的影响.经X射线衍射仪和透射电镜测试分析,产品系晶粒为20-30nm纳米银粉.  相似文献   

3.
对微乳液和反相微乳液法的基本原理、研究动态以及在合成和制备纳米铁系化合物上的应用进行了综述。  相似文献   

4.
利用反相细乳液法以硅酸四乙酯(TEOS)为硅源,成功制备了二氧化硅空心微球.对影响空心微球粒径大小、单分散性的影响因素如表面活性剂、硅源的用量,陈化过程中的搅拌速度进行了初步的探索.通过大量的实验,得出VTEOS=0.75mL,VTween80=200μL,VSpan80=400μL;在陈化搅拌阶段,先以v=600r/min的速度搅拌6h,然后以v=300r/min的速度搅拌6h,最终静置12h.在该条件下能够得到比较好的空心二氧化硅微球.  相似文献   

5.
讨论了微乳液的一些理论,反相胶束微乳液法合成纳米粒子的原理,以及这种方法在合成纳米粒子中的具体应用。  相似文献   

6.
在水/Span80-Op10/甲苯反相乳液体系中制备出了粒径小且分布较窄的银纳米粒子,利用TEM和XRD对所制备的银纳米粒子的形态和晶体结构进行了表征.研究结果表明,此种方法得到的银的存在形式与反应条件,例如,油水比、表面活性剂用量、搅拌速度及温度有着密切的联系,可望达到对金属银纳米粒子的可控制备与性能调控.  相似文献   

7.
在水/甲苯/十二烷基硫酸钠/正戊醇形成的四元W/O型微乳液中,通过渗透反应和融合反应分别合成了不同形貌的超细二氧化硅颗粒。利用相图研究了W/O型微乳液系统相行为稳定性与制备条件的关系。讨论了以反相微乳液为媒介,不同制备工艺及R值对产品形貌和粒径大小的影响,并对其机理进行了分析。  相似文献   

8.
纳米微粒的微乳液制备方法   总被引:8,自引:0,他引:8  
纳米材料的制备是纳米科学发展的基础,微乳液法与传统的制备方法相比具有明显的优势,文章较全面地了微乳液中纳米微粒的形成机理,影响因素及对纳米微粒结构的鉴定方法。  相似文献   

9.
以3-巯基丙酸为稳定剂,亚硒酸钠为硒源,合成高质量水溶性CdSe量子点。在pH值为11.0的碱性条件下,当n(Cd)∶n(Se)∶n(MPA)=1∶0.2∶1.1时,在9.0h内,可获得荧光发射峰在511563nm范围内连续可调CdSe量子点,最高荧光量子产率值可达16.1%。采用反相微乳液技术,制备以CdSe量子点为核的SiO2荧光纳米颗粒。用荧光分光光度计,红外光谱仪,透射电镜等分析测试手段,对得到的荧光纳米颗粒的性能进行表征。结果表明:得到的SiO2纳米颗粒大小均匀,水溶性和光稳定性好。  相似文献   

10.
研究了微乳液制备纳米Ni-Fe复合物微粒时水核半径R(=[W]/[S]) 对微粒粒径的影响,结果表明,R值不同,得到了Ni-FeDan合物微粒不但粒径不同,产物的组成也有差异,当R>24时,微粒粒径最大,且组成复杂,当R<18时,微粒粒径变小,组成较单一,且可得到Ni-Fe合金相,各样品磁参数的测量表明,随Ni-Fe微粒粒径增加,矫顽力减少。  相似文献   

11.
反相微乳液合成亲水性聚合物纳米微球   总被引:1,自引:0,他引:1  
利用反相微乳液一步法成功导合成磁性聚合物纳米微球,研究表明:Fe(Ⅱ)浓度对微乳液和胶乳的稳定有很大的影响,透射电镜(TEM)和动态光散射仪(DLS)结果说明微球粒径在100nm左右,均一性较好,SOT含量能控制微球粒径,振动探针式磁强仪(VSM)测定了不同比例的[Fe(Ⅱ)]/[Fe(Ⅲ)]所合成的聚合物微球的磁性,并发现温度对合成高磁饱和强度和超喘磁性起关键作用,合成的磁性聚合物微胶乳透明而且能稳定数个月。  相似文献   

12.
以丙烯酰胺(AM)和二甲基二烯丙基氯化铵(DMDAAC)水溶液为水相,失水山梨醇单油酸酯(Span80)/聚氧乙烯失水山梨醇硬脂酸酯(Tween60)/异构烷烃Isopar M为油相,过硫酸铵/亚硫酸氢钠((NH4)2S2O8/Na HSO3)为引发剂,在40℃进行反相微乳液聚合制备阳离子聚丙烯酰胺P(AM-DMDAAC).通过红外光谱(IR)、液相色谱(LC)、扫描电镜(SEM)对共聚物结构、丙烯酰胺单体残留量及表面形貌进行表征分析.结果表明,在40℃,HLB值为8.5,AM与DMDAAC质量比为8∶2,引发剂占单体总质量的0.7%,乳化剂占油相总质量的25%时,得稳定透明的微乳液,产物为无单体残留阳离子聚丙烯酰胺共聚物,阳离子度为30%.  相似文献   

13.
由于成功地排除了关联个别超微粒子特性与体系宏观性质的困难,Majievic的单分散超微粒合成技术曾被誉为80年代最出色的化学实验成就之一。本文报导了用微乳胶法制备表面经有机化合物修饰的单分散超微粒子的条件,并进行了表征。  相似文献   

14.
微乳液法制备单分散的Cr2O3超微粒子及其表征   总被引:2,自引:0,他引:2  
用微乳液法制备了经十二烷基苯磺酸钠(DBS)和硬脂酸(ST)表面修饰的Cr2O3超微粒子。讨论了影响超微粒子粒度和萃取率的因素,并用TEM,IR,TG,DTA,XRD,XPS及紫外吸收光谱进行了表征。  相似文献   

15.
微乳液法提取ZnO超细粉末   总被引:7,自引:0,他引:7  
在Triton X-100 正己醇/环己烷/水溶液(硝酸锌)体系W/O微乳液中滴加氨水,在不同的焙烧温度下处理得到ZnO超细粉末,用差热分析、X-Ray衍射和透射电镜对ZnO微粉进行了分析,实验结果表明,乳化温度、表面活性剂与助表面活性剂之比及水相的性质对体系相图有影响,焙烧温度影响粒子的大小。  相似文献   

16.
通过实验绘制了复配乳化刑、丙烯酰胺和环己烷的拟三元相图。采用氧化还原引发剂,研究了丙烯酰胺反相微乳液聚合动力学,分析了单体浓度、引发剂浓度、乳化剂浓度对聚合反应速率、聚合物相对粘均分子质量的影响。得到平均聚合速率Rp正比于[M]^2.29[I]^0.571[E]^-1.180,相对粘均分子质量Mη^—比于[M]^0.268[I]^-0.770[E]-0.953。  相似文献   

17.
采用新复合引发体系,在反相微乳液中合成出相对分子量较高且性能优良的聚丙烯酰胺。合成聚丙烯酰胺的正交实验方案结果表明,反应温度及引发剂比值是影响产物分子量的主要因素;最佳聚合条件如下:反应温度为40℃,氧化还原剂/偶氮引发剂为1/4,pH为9.00。引发剂浓度为0.3%,单体浓度为20%。采用傅里叶红外光谱仪、扫描电子显微镜对合成的聚丙烯酰胺进行了表征。  相似文献   

18.
聚合物包裹法制备有机/无机复合粒子研究进展   总被引:1,自引:0,他引:1  
朱文 《山东科学》2010,23(5):22-27
本文综述了用聚合物包裹无机粒子的各种方法,包括直接吸附法、非均相聚合法等,其中用细乳液制备有机/无机复合粒子是比较有优势的一种方法。最后介绍了复合粒子的应用。  相似文献   

19.
利用CTAB/环己烷/异丁醇/水作为反应介质,在微乳液体系中制备了CdSe纳米线。利用X射线衍射、透射电子显微镜、扫描电镜表征了CdSe纳米线的形貌和粒径尺寸,进一步研究了CdSe纳米线的生成过程,讨论了水含量、表面活性剂浓度对CdSe纳米线的影响。  相似文献   

20.
非水反相微乳液体系陶瓷墨水可以在成型后快速干燥,有利于获得均匀、致密堆积的陶瓷坯体,但非水微乳液体系较水性微乳液体系复杂,制备难度大.采用脂肪醇聚氧乙烯九醚(AEO9)/正丁醇/正辛烷/乙醇体系,研究体系的组成设计,绘制不同组分配比和不同温度时的体系拟三元相图,最佳组成的质量分数为AEO9∶正丁醇∶正辛烷=29.1∶19.4∶51.5,温度控制在30℃为宜.制备了ZrOCl2·8H2O和NH3·H2O两种非水微乳液,将二者搅拌混合,反应制得ZrO2陶瓷墨水.从喷射打印成型的技术要求出发,考察了陶瓷墨水的物理化学性能及变化规律.结果表明,陶瓷墨水透明稳定,质量浓度达1.4%,粒度20nm左右,高度分散,表面张力、粘度等指标均满足间歇式喷墨打印机的技术要求,仅电导率与连续式喷墨打印机的技术要求存在一定差距.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号