首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高铁酸钾作为贮备电池电极材料的研究   总被引:1,自引:0,他引:1  
以电解法制得的高纯度K2FeO4固体为正极,锌箔或铝箔为负极制成碱性实验电池.通过对Zn-K2FeO4和Al-K2FeO4电池在不同负载下的恒阻放电测试,研究了高铁酸钾电池的电化学性能.结果表明,Al-K2FeO4电池表现出比Zn-K2FeO4电池更为优越的放电性能.基于高铁酸钾在溶液里的不稳定性,提出用Al-K2FeO4电池做贮备电池,并研究其在不同负载、不同温度下的恒阻放电性能及电池的激活时间.  相似文献   

2.
介绍了一种将石墨烯(Graphite)引入锂离子电池正极材料磷酸铁锂(LiFePO_4)中获得LiFePO_4/graphite复合材料的制备方法。首先以碳酸锂、草酸亚铁、磷酸氢二铵和葡萄糖为原材料,采用高温固相法合成了碳包覆的LiFePO_4前躯体,再通过固相粉体混合的工艺加入不同百分比的石墨烯,制备出磷酸铁/石墨烯锂离子电池正极复合材料;对所制备的复合材料组装成纽扣电池进行性能测试;结果表明:复合材料的电化学性能显著提高,在0.1C放电倍率条件下,LiFePO_4+1wt%graphite复合材料的首次放电容量从LiFePO_4基体材料的131.75mAh/g提高到146.51mAh/g,LiFePO_4+1wt%graphite复合材料的充电性能和放电性能分别提高了5.8%和4.8%。  相似文献   

3.
采用高温固相浸渍法合成了多元复合掺杂尖品晶石型锰酸锂Li1.02MxMn2-xQyO4-y正极材料。XRD表征合成的产物均为良好的尖品晶石型结构材料;SEM表明所合成的产物颗粒均匀且有良好的粒径分布。以该物质作为锂离子电池的正极材料组装成扣式电池,经充放电循环测试可知:多元素掺杂的尖晶石型锰酸钾正极材料Li1.02CoaCrbLacMn2-a-b-cFyO4-y较富锂尖,晶石和单元Co、Cr掺杂的正极做材料能够更好地抑制电池的可逆容量在充放电过程中的衰减,循环性能有了很大改善,表现出很好的电化学可逆特性,80次循环后放电容量仍能保持94.5%以上;特别是高温(55℃)性能更加突出,40次循环后放电容量仍能保持102.1mA.h/g(91.5%)以上。作为钾离子电池的正极材料,恢复合掺杂材料是众多取代钻酸锂材料中最具竞争力的材料之一,也有望成为锂离子动力电池的正极材料.  相似文献   

4.
通过溶剂热方法制备了纯净的CuFeS2粉体,并分别以天然和合成的CuFeS2作为锂电池正极材料装配电池进行电化学性能测试.测试结果表明,合成的CuFeS2作为正极材料、碳纳米管作为导电剂装配的电池室温一次放电容量达到了1 300mAh/g,放电平台为1.75,1.50V;天然CuFeS2中含有C,O,Si,Al等杂质元素,室温一次放电容量为1 000mAh/g,放电平台以及放电曲线形状均与合成CuFeS2为正极材料时相似.CV曲线说明Li/CuFeS2电池在室温下具有循环潜力.400℃真空焙烧3h有利于去除所合成CuFeS2粉体表面的残留溶剂,降低电极片内阻.另外,研究了电池在不同放电倍率下的放电性能.  相似文献   

5.
采用优化合成的高比表面积和多微孔结构的活性炭,通过加热的方法使单质硫升华并沉积到活性炭微孔中,得到锂硫电池正极用硫碳复合材料.通过X射线衍射、扫描电子显微镜和比表面积表征复合材料的结构、表面形貌和比表面特性.循环伏安测试表明,复合材料在2.05V和2.35V时存在两个还原峰,在2.4V时存在一个氧化峰.充放电循环实验表明,单质硫在100mA·g-1的电流密度下首次放电比容量高达1352.5mA·h·g-1,硫的利用率达到了80.9%,循环40周后比容量还保持在800.7mA·h·g-1,表现出良好的循环稳定性.  相似文献   

6.
采用高温固相浸渍法合成了多元复合掺杂尖晶石型锰酸锂Li 1.02MxMn 2-xQyO 4-y正极材料.XRD表征合成的产物均为良好的尖晶石型结构材料;SEM表明所合成的产物颗粒均匀且有良好的粒径分布.以该物质作为锂离子电池的正极材料组装成扣式电池,经充放电循环测试可知:多元素掺杂的尖晶石型锰酸锂正极材料Li 1.02CoaCrbLacMn 2-a-b-cFyO 4-y较富锂尖晶石和单元素Co、Cr掺杂的正极材料能够更好地抑制电池的可逆容量在充放电过程中的衰减,循环性能有了很大改善,表现出很好的电化学可逆特性,80次循环后放电容量仍能保持94.5%以上;特别是高温(55 ℃)性能更加突出,40次循环后放电容量仍能保持102.1mA.h/g(91.5%)以上.作为锂离子电池的正极材料,该复合掺杂材料是众多取代钴酸锂材料中最具竞争力的材料之一,也有望成为锂离子动力电池的正极材料.  相似文献   

7.
失效锂离子电池正极材料的再生及电化学性能   总被引:1,自引:0,他引:1  
以废旧锂离子电池正极材料钴酸锂为原料,将锂与钴元素的比例进行适当调整后,采用高温固相合成制备出LiCoO2材料,并利用XRD、SEM、循环伏安等手段对不同煅烧温度下合成LiCoO2材料的晶相结构、表面形貌及电化学性能进行测试表征.结果表明,经850℃煅烧12h后的LiCoO2材料的性能较好,首次充电容量达143mA.h/g,放电比容量达126mA.h/g,循环30周之后仍保持92%的放电比容量,再生后的LiCoO2材料表现出良好的电化学性能.  相似文献   

8.
文章采用硬模板法制备了介孔碳,与单质硫混合制备了锂硫电池正极材料,采用BET、XRD、FESEM等测试手段对材料的性能进行表征,并研究了以介孔碳、导电石墨和碳纳米管为导电基体的锂硫电池的电化学性能。结果表明,硫/介孔碳复合材料为正极的电池在0.1C的放电倍率下首次放电比容量为1 389mA·h/g,0.2C倍率下首次放电比容为1 313mA·h/g,100次循环后,库仑效率保持在95%以上,其电化学性能在3种复合材料中最优。  相似文献   

9.
通过掺杂过渡金属元素铌(Nb)和改进合成方法,成功得到了电池充电截至电压为4.3V和4.35V时稳定的正极材料LiCoO2,其初始放电比容量分别达到157.5mAh/g(四个抽样电池的平均值,下同)和163.7mAh/g,比目前普遍使用的充电截至电压为4.2V的LiCoO2正极材料的比容量(约140mAh/g)高出12%和16%以上。以1C倍率充放电200周后,容量保持率大于95%,显示出良好的循环性能。过充安全测试结果表明其达到现行安全标准。此类LiCoO2材料的应用将有望较大幅度提高锂离子电池的能量密度,说明拓宽电池的使用电压范围也可能不失为提高电池比能量的一种有效途径。  相似文献   

10.
在SUS304不锈钢衬底上以粉末靶材为溅射靶源,利用射频磁控溅射技术制备出非晶态结构的V2O5、LiPON和LiMnO4薄膜,并借助扫描电子显微镜(SEM)测试手段对薄膜的形态进行表征.用此3种沉积的材料依次作为薄膜电池的负极、固体电解质和正极,金属钒则作为集电极,成功制备出全固态薄膜锂离子二次电池.实验结果表明,截止电位控制在0.3~4.0V之间测试时,该薄膜电池具有良好的充放电特性;经过500次循环后,其电化学性能趋于稳定,放电容量保持在2.67 μAh/cm2左右;采用恒定电流为20 μA进行循环性能测试时,首次放电容量达到4.41 μAh /cm2,循环寿命则可达到1 500次以上.  相似文献   

11.
锰基氧化物正极材料具有低成本、高容量和高能量密度等优点,是钾离子电池正极材料研究的热点.然而,由于正极材料与电解液直接接触,发生副反应,导致容量迅速衰减,限制了它的广泛应用.为解决这一问题,对正极材料采用表面包覆的改性策略,以多巴胺为碳源,采用溶剂热法在K0.5Mn2O4.3·0.5H2O正极材料均匀地包覆碳涂层.碳包覆层阻止了正极材料与电解液的直接接触,有效地抑制了副反应.结果发现:在电流密度为50 mA/g的条件下,添加占正极材料质量10%的多巴胺时,放电容量为89.8 mA·h/g,容量保持率为63.4%,表现出优异的电化学性能,而未包覆的正极材料的放电容量为68.8 mA·h/g, 循环100圈后容量保持率为32%.这种表面涂层策略为提高钾离子电池阴极的循环稳定性提供了一种新的改性方法.  相似文献   

12.
对商业锌锰电池正极材料进行了修饰,改进后电池放电性能有较大改善。在75ohm负载下连续放电至0.8V时与Duraeell Ultra(AAA)电池相比,放电时间为90.95h,平均延长31.1%;电池能量为1.555Wh,增加23.4%。  相似文献   

13.
采用水热法制备了S/石墨烯复合材料,并利用XRD,SEM,TEM等手段考察了其微观结构及形貌特征,发现石墨烯呈现多层状,与硫复合后能将其充分包覆。以复合材料为正极、锂为负极组装成扣式电池进行CV,EIS及充放电等电化学性能测试。结果表明:添加石墨烯后硫正极的可逆性明显改善,多次充放电后电池内阻有所增加,在0.3mA/cm2电流密度下放电,首次放电比容量为1 145mAh/g,经30次充放电循环后仍可稳定在500mAh/g。  相似文献   

14.
镍正极掺杂NiOOH的MH/Ni电池性能   总被引:1,自引:0,他引:1  
将化学氧化法合成的NiOOH以一定的比例掺杂到商用球形Ni(OH)2粉末当中,以此作为镍正极活性材料,制成额定容量为1 5Ah圆柱密封AA型MH/Ni碱性蓄电池·采用恒流充放电和交流内阻分析方法测试了该电池的性能·结果表明:镍正极掺杂NiOOH的MH/Ni电池在活化效率和循环寿命方面得到了明显的改善和提高,掺杂NiOOH的镍正极具有更高的反应活性及更小的电化学反应阻抗,因而表现出良好的电化学性能·实验表明,镍正极活性材料中NiOOH的掺杂量为1%~3%时对电池性能有较好的影响,掺杂量过多会降低电池的放电容量·  相似文献   

15.
采用锰酸锂为正极材料,钛酸锂为负极材料制成了26650/2 500 mAh的锂离子电池,该电池10 C放电容量能够达到1.0 C放电容量的97.30%,电池在-20 ℃的条件下0.5 C放电能够放出相比25 ℃条件下容量的98.72%,在55 ℃的条件下0.5 C放电能够放出相比25 ℃条件下容量的97.83%,1.0 C循环测试200周后容量剩余率为96.10%,电池以3.0 C倍率过充到20.0 V没有爆炸和起火,经过针刺短路之后没有爆炸、起火,电池表面最高温度不超过90 ℃.  相似文献   

16.
正极添加剂对极板孔隙结构和性能的影响   总被引:2,自引:0,他引:2  
对不同添加剂的铅酸蓄电池正极放电性能进行研究.采用单片正极电池在电池容量受正极控制的条件下,以不同放电倍率恒流放电,分别测定了加入Bi2O3,CdSO4,CaSO4和PbO2等添加剂的单片正极容量和能量,获得了较高的比容量和比能量的提高率.首次应用图像分析仪测定了极板的平均孔径、孔表面积、孔数及分布等孔结构参数,并拍摄了正极板表面的显微图像照片.探讨了不同添加剂对正极孔结构及性能的影响规律和机理.  相似文献   

17.
以LiNi0.8Co0.1Mn0.1O2(NCM811)为正极、中间相碳微球(MCMB)为负极构建锂离子全电池,研究了充放电电压区间对NCM811/MCMB全电池电化学性能的影响。研究结果表明:以4.3 V为充电截止电压,降低放电截止电压可提高全电池的容量,但高放电截止电压下全电池的循环性能更加稳定;在2.8~4.3 V电压区间下,NCM811/MCMB全电池不但具有高的比容量,同时还具有良好的循环性能和充放电可逆性。  相似文献   

18.
通过掺杂过渡金属元素铜,成功得到了粉末振实密度超过2.8g/cm3的高密度的锂离子电池正极材料LiCoO2.其初始放电比容量超过140mAh/g,以1C倍率充放电300周后,容量保持率大于90%,显示出良好的循环性能.SEM照片显示材料颗粒致密、表面光滑,粒径主要分布在5~10μm.安全测试结果表明其达到安全标准.此类LiCoO2材料的应用将有利于提高目前锂离子电池的体积能量密度.  相似文献   

19.
锂离子电池正极材料安全性能——过充性能   总被引:2,自引:0,他引:2  
锂离子电池由于安全性问题,使大容量电池的应用受到限制,比如用作电动汽车(EV)、混合动力汽车(HEV)的动力电源.以不同正极材料组装成AA型锂离子电池,研究其过充性能.试验结果表明尖晶石型LiMn2O4作为锂离子电池正极材料,耐过充性较好;新型包埋镍酸锂梯度正极材料有很好的耐过充性能.  相似文献   

20.
用高温固相反应法制备Cu微粒包覆的锂离子电池正极材料Cu/LiFePO4.采用X射线衍射、场发射扫描电镜对材料的物相结构和颗粒形貌进行分析和观察,采用恒流充放电、慢扫描循环伏安法和电化学阻抗谱法测试材料的电 化学性 能.结果表明,Cu微粒包覆使复合材料颗粒分散更均匀,结晶更明显;Cu/LiFePO4(n(Cu)∶n(Li)=1∶15)正极材料首次放电比容量最高为142.8 mA·h/g,与纯LiFePO4正极材料的对应值151.7 mA·h/g相比有所下降;虽然Cu微粒的加入在一定程度上能够提高材料的电子导电率,但在第一周充电时Cu即发生不可逆氧化,导致该复合材料具有较低的放电比容量和较大的首次不可逆容量损失.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号