首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
详细探讨了在制备(Bi1/2Na1/2)TiO3-BaTiO3(abbr.BNBT)系无铅压电陶瓷的过程中,合成条件Ty和烧结温度Ts对材料压电介电性能的影响,确定了较好的制备BNBT系压电陶瓷的工艺条件,并且系统地研究了(1-x)*(Bi1/2Na1/2)TiO3-xBaTiO3(x=0.02、0.04、0.06、0.08、0.10)的性能.XRD结构分析发现系统的相界在x=0.06,此时d33等压电介电性能参数达到最佳值.  相似文献   

2.
BaTiO3纳米粉体及其陶瓷的制备和介电性能   总被引:3,自引:1,他引:3  
采用溶胶-凝胶(Sol-gel)法制备BaTiO3纳米粉体及其陶瓷.通过XRD、SEM和TEM对BaTiO3粉体及其陶瓷进行了表征,并测试了陶瓷的介电性能.研究了预烧温度和烧结温度对BaTiO3粉体及其陶瓷微观结构和介电性能的影响.结果表明:950℃预烧2 h的BaTiO3粉体主要为四方相,其尺寸为60 nm左右,经1 300℃烧结2 h的BaTiO3陶瓷具有高的介电常数(10 820)和小的介电损耗(0.01).  相似文献   

3.
Ba6-3xNd8+2xTi18O54(x=2/3)的聚合物前驱体法合成研究   总被引:3,自引:0,他引:3  
以EDTA为络合剂,EG为酯化剂,利用聚合物前驱体法合成了Ba6-3xNd8 2xTi18O54陶瓷,研究了不同的EDTA与金属离子摩尔比对粉末结晶特性的影响,利用DTA,TG和XRD等技术分析了Ba6-3xNd8 2xTi18O54前驱体和得到的氧化物粉末,测试了由x(EDTA)/x(M)=1.00的前驱体得到的Ba6-3xNd8 2xTi18O54(x=2/3)陶瓷的微波介电性能。在900℃预烧x(EDTA)/x(M)=1.00的前驱体3h,单相的Ba6-3xNd8 2xTi^18O54(x=2/3)直接形成,没有出现中间相。1000℃预烧,1340℃烧结的Ba6-3xNd8 2xTi18O54(x=2/3)陶瓷具有最佳的微波介电性能:ε=87.1,Qf=8710GHz。  相似文献   

4.
Na0.5Bi0.5TiO3-BaTiO3无铅压电陶瓷制备及性能   总被引:1,自引:0,他引:1  
研究了不同烧结制度下的NBBT6陶瓷的致密度、介电和压电性能.870℃左右预烧,可以得到致密且压电和介电性能较好的陶瓷(d33=107 pC/N.∈r=750,tanδ为3.23%).通过相应的粒度分析可知,提高预烧温度对粒度的影响不太大,但可用于湿法制备工艺中的原材料制备,解决湿法工艺中材料易被极性水分子解离而影响材料组分的问题.加入少量的BaTiO3到NBT中形成NBT-BT的固溶体,通过对压电介电性能及XRD的分析可知.当质量分数x=0.06时.(1-x)Na0.5Bi0.5TiO3-xBaTiO3晶体结构出现由三方相到四方相的转变,此时的性能达到最大值(d33=114 pC/N,∈r=1 173.tanδ为3.4%).  相似文献   

5.
以熔盐法合成的片状SrTiO3晶粒为模板,利用模板晶粒生长(TGG)技术制备晶粒沿[001]方向为取向的0.94(Na1/2Bi1/2)TiO3-0.06BaTiO3(简写为BNBT6)无铅压电陶瓷,采用X线衍射仪(XRD)、扫描电子显微镜(SEM)对陶瓷试样进行表征,采用透射电子显微镜(TEM)观察SrTiO3与BNBT6基体界面的微观结构.结果表明,BNBT6陶瓷晶粒定向生长过程分为2个阶段:首先是异质外延生长阶段,即在片状模板晶粒的诱导下,BNBT6基体粉体在SrTiO3模板晶粒表面外延生长,形成与模板取向完全一致的单晶生长层的过程;其次是同质外延生长阶段,即单晶生长层生成后吞噬BNBT6基体粉体逐步生长得到各向异性的高取向BNBT6陶瓷的过程.  相似文献   

6.
采用传统的无压固相烧结法工艺制备微量掺杂0.2%(摩尔分数)BiMnO3(BM)的0.95K0.5Na0.5NbO3(KNN)-0.05 LiSbO3(LS)陶瓷,并研究烧结保温时间对陶瓷的结构与压电、介电性能的影响规律。研究结果表明,随烧结保温时间的延长,陶瓷的压电常数d33和机电耦合系数kp先显著升高,当保温时间为7 h时,趋于稳定,介电常数εr也随保温时间的延长而升高;机械品质因数Qm和介电损耗tanδ则一直降低。在1 100℃保温烧结9 h时,陶瓷具有最好的电性能:压电常数d33=228 pC/N,机电耦合系数kp=43%,机械品质因数Qm=55,介电损耗tanδ=0.017 8;随保温时间的延长,陶瓷的相转变温度θo-t有所降低,居里温度θc则明显升高。所有陶瓷样品在35~200℃内的介电损耗tanδ均有小于0.02。  相似文献   

7.
研究了添加B2O3的Ca[(Li1/3Nb2/3)1-xTi3x]O3-δ(0≤x≤0.2)(CLNT)陶瓷的微波介电性能.在整个组分范围内检测到单一的正交相.随着x从0增加到0.2,介电常数(k)将从30增至89,Qf值则下降到3820GHz,谐振频率温度系数(TCF)从-16×10-6/℃增加到22.4×10-6/℃.当B2O3添加1.0%时,CLNT陶瓷的烧结温度可以从1150℃降至970℃而不降低微波介电性能.940℃烧结后,x=0.1试样的微波性能为k=50,Qf=6500GHz,温度系数为-7.6×10-6/℃.  相似文献   

8.
用传统固相法制备PbZrO3-PbTiO3-Pb(Fe2/3W1/3)O3-Pb(Mn1/3Nb2/3)O3(简称PZT-PFW-PMN)四元系压电陶瓷.研究了不同含量的Nb2O5对PZT-PFW-PMN陶瓷的相结构、密度、介电性能和压电性能的影响.结果表明,当预烧温度为800℃,Nb2O5的质量分数w为0.00%并在1 200℃下烧结时,材料具有良好的综合电性能:d33=365pC/N,Kp=0.64,Qm=1 743,tanδ=0.005 6和r=0.997Ω,该组份是大功率压电陶瓷变压器用材料优良的备选体系.  相似文献   

9.
微波烧结是一种新型、高效的陶瓷烧结工艺,具有升温速度快、节能省时、改善微观结构、降低烧结温度等特点。本文采用微波烧结工艺制备了Fe2O3掺杂的0.55Pb(Ni1/3Nb2/3)O3-0.45Pb(Zr0.3Ti0.7)O3(简写为0.55PNN-0.45PZT)压电陶瓷,烧结温度为1200℃、保温时间为2h。利用X射线衍射(X-Ray Diffraction,XRD)、扫描电子显微镜(Scanning Electron Microscope,SEM)、阻抗分析仪及铁电分析仪等测试表征方法,研究了Fe2O3掺杂对陶瓷的结构、介电以及压电性能的影响。结果表明,所有陶瓷样品均为钙钛矿结构,随着Fe2O3掺杂量的增加,压电和介电性能呈先增加后减小趋势。当Fe2O3掺杂量为0.8%(质量分数)时,陶瓷达到最优电学性能:压电常数d33、平面机电耦合系数kp、相对介电常数εr和介电损耗tanδ分别为d33=520pC/N,kp=0.51,εr=4768,tanδ=0.026。  相似文献   

10.
(Bi0.5 Na0.5)TiO3-BaTiO3系陶瓷的介电弛豫性能   总被引:3,自引:0,他引:3  
采用传统压电陶瓷固相合成法制得了纯钙钛矿相的(1-x)(Bi0 5Na0.5)TiO3-xBaTiO3(J=0.02,0.04,0.06,0.08,0.10)(简写作BNBT)系无铅压电陶瓷研究了1kHz条件下室温到400℃的温度范围内BNBT试样的介电温谱以及3种不同频率下(1、10、100kHz)BNBT-6试样的介电温谱,发现材料在研究组成范围内均为弛豫型铁电体。采用HRTEM研究了该系统的畴结构,表明BNBT钙钛矿结构铁电体的介电性能与复合离子的有序无序排列密切相关,纳米尺度有序微畴对介电弛豫起着重要作用。  相似文献   

11.
采用溶胶凝胶法,以硝酸钇和柠檬酸为原料对LiNi1/3Co1/3Mn1/3O2进行包覆. 室温下,在2.8~4.3 V和1 C充放电条件下,以柠檬酸协助的Y2O3包覆LiNi1/3Co1/3Mn1/3O2材料作为正极,锂片作为负极,制成的电池50次循环容量没有衰减,而未加柠檬酸的Y2O3包覆LiNi1/3Co1/3Mn1/3O2材料50次循环容量保持率为96.72%,未经过包覆的材料只有91.03%.  相似文献   

12.
采用低热固相反应法制备锂离子电池层状正极材料LiNi1/3Co1/3Mn1/3O2,考察制坯、回火温度和回火时间对合成产物电化学性能的影响。用X射线衍射分析(XRD)和电化学性能测试,对LiNi1/3Co1/3Mn1/3O2进行分析。结果表明:预烧后需要制坯,最佳回火温度为600℃,最佳回火时间为2 h;最佳工艺条件下制备的样品首次放电比容量为150.3 mAh.g-1,30次循环后仍大于130 mAh.g-1。  相似文献   

13.
采用柠檬酸盐法在不同温度下合成了LiNi1/3Mn1/3Co1/3O2, 并考察了不同合成温度对材料形貌及性质的影响. X射线衍射(XRD)结果表明, 900 ℃烧结的样品具有最完整的晶体结构,  电化学测试结果表明, 该样品具有良好的循环性能与倍率性能, 首次充放电效率达到91.3%.   相似文献   

14.
采用高温固相法制备LiNi1/3Co1/3Mn1/3O2,溶胶-凝胶法制备AlPO4包覆LiNi1/3Co1/3Mn1/3O2材料(AlPO4-coated LiNi1/3Co1/3Mn1/3O2).并用XRD、SEM检测等对材料进行了表征,用X-射线衍射、扫描电镜分析以及电化学测试等手段对样品的微观结构、表面形貌和电化学性能进行了研究.结果表明:在AlPO4-coated LiNi1/3Co1/3Mn1/3O2中,AlPO4以无定形态包覆于的表面;AlPO4的存在,阻止了电极与电解质溶液之间的副反应,降低了电极的表面膜阻抗和电荷转移阻抗,加快了锂离子的扩散速度,使得LiNi1/3Co1/3Mn1/3O2的循环性能和倍率性能显著改善.  相似文献   

15.
陈猛  蒲俊红 《应用科技》2006,33(9):58-61
采用液相共沉淀合成法制备了LiNi1/3Co1/3Mn1/3O2正极材料,用XRD表征了材料的结构.在LiNi1/3Co1/3Mn1/3O2/1mol·L-1 LiPF6-EC+DEC+EMC/MCMB体系中用恒流充放电和交流阻抗技术研究了材料的电化学性能.XRD表明,合成的材料具有良好的α-NaFeO2层状结构.恒电流充放电测试显示,在3.0~4.2 V 0.1倍率下的初始放电比容量为133.38 mAh·g-1.经过100次的循环之后,电池还能保持良好的性能.在高低温环境测试中,体系表现出了良好的放电性能.  相似文献   

16.
低温熔盐法合成球形LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2研究   总被引:1,自引:1,他引:0  
采用低温熔盐法合成了锂离子电池正极材料Li Ni1/3Co1/3Mn1/3O2,并就低温熔盐0.62xLi NO3-0.38xLi OH-(1-x)CH3COOLi.2 H2O的具体比例、焙烧温度和焙烧时间对材料的影响进行了对比研究.XRD结果表明以x=0.6的低温共熔盐,经3阶段温度烧结(200℃,3 h;600℃,制备的样品的α-NaFeO2层状结构发育的较为完备.SEM扫描显示材料是由许多片状晶体构成的球形颗粒.材料在2.8~4.3 V范围内充放电,倍率为0.2 C时,首次放电比容量为173.6 mA.h.g-1,循环20次后容量保留97.4%;倍率为1 C时,首放126.0 mA.h.g-1,循环20次后容量保留94.1%.  相似文献   

17.
采用复合碱媒介法(CHM),以BaCl和MnO2为原料在200 ℃、24 h的生长条件下合成了纳米BaMnO3单晶颗粒.采用同样方法,以Sr(NO3)2、BaCO3以及MnO2为原料,在200 ℃、24 h的生长条件下,用50%的Sr替代50%的Ba,成功合成了Ba1/2Sr1/2MnO3.用X射线衍射仪(XRD)、扫描电镜(SEM)及能量散射X射线谱(EDS)对产物的晶相、形貌和成分进行了分析,并且解释了BaMnO3及Ba1/2Sr1/2MnO3的生长机理.  相似文献   

18.
共沉淀法合成Ni_(1/3)Co_(1/3)Mn_(1/3)(OH)_2的热力学分析   总被引:1,自引:1,他引:0  
对Me2+(Me=Ni,Co,Mn)-NH3-OH--H2O共沉淀反应体系进行了热力学分析,采用共沉淀法合成了LiNi1/3Co1/3Mn1/3O2正极材料前驱体Ni1/3Co1/3Mn1/3(OH)2,研究了pH值和氨水浓度[N]对前驱体振实密度的影响.热力学分析表明:以氢氧化钠为沉淀剂、氨水为络合剂,采用共沉淀法合成前驱体的最佳pH值为11,最佳[N]为0.1~0.5mol/L;在此条件下,金属阳离子Ni2+、Co2+和Mn2+的损失最小,分别小于1×10-3、1×10-3和1×10-6mol/L.在pH=11、[N]=0.24mol/L条件下,所合成的前驱体中Ni、Co、Mn的摩尔比为0.324∶0.349∶0.327,与理论设计值1∶1∶1非常接近,其振实密度高达1.32g/cm3.  相似文献   

19.
通过对共沉淀Me2+ (Me = Ni, Co, Mn)-NH3-OH--H2O体系进行热力学分析,拟合出lg[Me]-pH关系曲线。以氢氧化钠为共沉淀剂,氨水为络合剂,采用共沉淀法进行锂离子电池(LIB)正极材料LiNi1/3Co1/3Mn1/3O2前驱体(Ni1/3Co1/3Mn1/3)(OH)2的合成研究。热力学分析结果表明:共沉淀体系的最佳pH值为11,合适的氨水浓度[N]为0.1~0.5 mol/L,此时各种金属阳离子(Me2+)的损失最小。基于以上最佳合成反应条件,在不加其它还原剂和絮凝剂时,所得前驱体材料的振实密度达到1.32 g/cm3。  相似文献   

20.
层状LiNi1/3Mn1/3CO1/3O2正极材料的合成   总被引:1,自引:0,他引:1  
用碳酸盐同沉淀法合成了LiNi1/3Mn1/3Co1/3O2正极材料,采用XRD(X-RayDiffraction)、SEM(ScanningElectronMicroscope)、差分计时电位法和充放电循环等对材料的物理化学性质及电化学性能进行了测试分析。XRD分析表明在合成温度为800℃或更高时,所合成的产物均为α-NaFeO2型的层状结构,SEM分析表明在合成温度为800或850℃时,产物为微小晶粒团聚成的球形颗粒,合成温度为900℃以上时,产物颗粒发生破碎,形状不规则。950℃合成的LiNi1/3Mn1/3Co1/3O2材料在2·5~4·4V电位区间内,首次放电容量为162mAh·g-1,并具有良好的循环性能。随着充放电电压的升高,首次不可逆放电容量增大,循环稳定性减弱。在低温(800,850℃)下合成的LiNi1/3Mn1/3Co1/3O2材料与高温下(900,950℃)得到的材料性能有很大差别,这是由于在高温和低温下得到材料的结构差别所造成的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号