共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
构造辅助函数是高等数学和数学分析证明中常采用的技巧.它起着化难为易、化未知为已知的桥梁作用.利用中值定理证明问题时,通常需要构造一个辅助函数.本文主要介绍使用中值定理时常用的一些构造辅助函数的方法. 相似文献
3.
4.
余丽 《重庆三峡学院学报》2014,(3):21-24
微分中值定理是微分学的基础内容,也是用来研究函数性态的重要手段.因此,对微分中值定理的研究和再证明长期以来都是经久不衰的话题.通过对微分中值定理的再证明,不仅有利于初学者对定理的理解和掌握,也有利于其对定理的灵活运用,同时通过对微分中值定理的推广,还可以得到更加一般的情形. 相似文献
5.
6.
孙治廷 《河北师范大学学报(自然科学版)》1989,(2):127-128,126
微分中值定理是微分学基本定理。一般说来:应用导数研究函数的性质,都要直接或间接的借助于中值定理,它是应用导数的局部性研究函数在区间上整体性的重要工具。然而在证明拉格朗日中值定理和柯西中值定理的过程中,都引入辅助函数,对此,在教学中学生不易掌握,多年来一直是教学上的难点。 相似文献
7.
8.
本文通过典型例子讨论了应用微分中值定理解证明题时构造辅助函数的一种常用的方法:指数因子法。 相似文献
9.
中值定理证明中辅助函数的构造 总被引:1,自引:0,他引:1
在中值定理的证明中构造辅助函数是关键,怎样构造出辅助函数是中值定理证明中的难点.本文通过对定理条件和结论的分析,给出了构造辅助函数的规律和方法. 相似文献
10.
11.
本文是在费尔马定理的基础上,得出了一个推论,由这个推论再引入辅助函数,然后比较容易地证明了四个微分中值定理, 相似文献
12.
13.
14.
Rolle中值定理是研究函数在区间上整体性质的一个有力工具,本文主要介绍在应用Rolle中值定理时构造辅助函数的两种方法。 相似文献
15.
16.
17.
微分中值定理教学改革探讨 总被引:3,自引:0,他引:3
袁文俊 《广州大学学报(自然科学版)》2004,3(1):85-89
从几何直观出发,运用启发式教学法,立足于整体角度,对微分学的基础内容——微分中值定理及其相关内容的教学进行了改革探索,研究了分析学上具有普遍意义的构造辅助函数法及其简单应用,为后续研究函数的性态和证明洛必达法则等中值定理的进一步应用问题打下了基础。 相似文献
19.
本文对"微分中值定理"的教学作了相关的探讨,研究了构造辅助函数的方法及其简单的应用,运用数形结合的方法给出微分中值定理的多种证明方法。目的在于对学生反复启迪、反复引导、反复渗透,使学生对微分中值定理的认识有一个螺旋的上升。为后续研究函数的性态和洛必达法则的证明打下基础。 相似文献
20.