首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Neurotrophin signalling pathways regulating neuronal apoptosis   总被引:18,自引:0,他引:18  
Recent evidence indicates that naturally occurring neuronal death in mammals is regulated by the interplay between receptor-mediated prosurvival and proapoptotic signals. The neurotrophins, a family of growth factors best known for their positive effects on neuronal biology, have now been shown to mediate both positive and negative survival signals, by signalling through the Trk and p75 neurotrophin receptors, respectively. The mechanisms whereby these two neurotrophin receptors interact to determine neuronal survival have been difficult to decipher, largely because both can signal independently or coincidentally, depending upon the cell or developmental context. Nonetheless, the past several years have seen significant advances in our understanding of this receptor signalling system. In this review, we focus on the proapoptotic actions of the p75 neurotrophin receptor (p75NTR), and on the interplay between Trk and p75NTR that determines neuronal survival.  相似文献   

2.
Neurotrophins are growth factors implicated in the development and maintenance of different neuronal populations in the nervous system. Neurotrophins bind to two sets of receptors, Trk receptor tyrosine kinases and the p75NTR receptor, to activate several different signaling pathways that mediate various biological functions. While Trk receptor activation has been well-studied and triggers the well-characterized Ras/Rap-MAPK, PI3K-Akt, and PLCgamma-PKC cascades, p75NTR signaling is more complex, and its in vivo significance has not yet been completely determined. In the last few years, p75NTR has received much attention mainly due to recent findings describing pro-neurotrophins as new ligands for the receptor and the ability of the receptor to form different complexes with other transmembrane proteins. This review will update the neurotrophin signaling pathways known for Trk receptors to include newly identified Trk-interacting molecules and will address surprising new findings that suggest a role for p75NTR in different receptor complexes and functions.  相似文献   

3.
Nerve growth factor (NGF) belongs by sequence homology to the neurotrophins, a family of proteins binding the same p75 receptor and closely related members of the Trk family of receptor tyrosine kinases. Fundamental in the vertebrate nervous system, neurotrophin signals have also been suggested as essential for relatively complex nervous systems occurring in invertebrate species that live longer than Caenorhabditis elegans and Drosophila melanogaster. Mammalian neurotrophins have been found to influence invertebrate neuronal growth. However, there are only a few data on the presence of molecules related to neurotrophin signalling components in invertebrates. Our studies provide evidence that analogues of neurotrophins and neurotrophin receptors are expressed in Eisenia foetida earthworms. In particular, NGF-like and Trk-like immunoreactive proteins are both expressed in the nervous system, whereas p75-like positivity identifies tubular structures associated with dorsal pores that are involved in the earthworm response to mechanical irritation or stress. Received 12 November 2001; received after revision 8 January 2002; accepted 8 January 2002  相似文献   

4.
The neurotrophins, a class of four related growth factors, utilize a dual receptor system consisting of Trk receptor tyrosine kinases and the structurally unrelated p75(NTR) to modulate diverse and sometimes opposing biological actions. The identification of novel ligands for p75(NTR), unconventional mechanisms for Trk activation and unique signaling intermediates further underscores the complex nature of neurotrophin: receptor interactions, as well as their functions within and outside of the nervous systems. This review summarizes recent surprises of how ligand-receptor pairing may affect diverse developmental events, regulate response to injury and extend their influence on memory and learning.  相似文献   

5.
This review deals with the receptor interactions of neurotrophic factors, focusing on the neurotrophins of the nerve growth factor (NGF) family, the glial cell derived neurotrophic factor (GDNF) family, and the ciliary neurotrophic factor (CNTF) family. The finding that two proteins, p75NTR and Trk, act as receptors for NGF in neurons generated the discovery of other neurotrophic factors/receptor families and has enhanced our understanding of the development, survival, regeneration, and degeneration of the nervous system. The kinetics of binding, the structure of the ligand-receptor complex, and the mechanism of retrograde transport of the neurotrophins are discussed in detail and compared to information available on the GDNF and CNTF families. Each neurotrophic factor family, i.e., NGF, GDNF, and CNTF, has a set of receptors with specificity for individual members of the family and a common receptor without member specificity that, in some families, generates the cellular signal and retrograde transport.  相似文献   

6.
7.
p75NTR, the common receptor for both neurotrophins and proneurotrophins, has been widely studied because of its role in many tissues, including the nervous system. More recently, a close relationship between p75NTR expression and pluripotency has been described. p75NTR was shown to be expressed in various types of stem cells and has been used to prospectively isolate stem cells with different degrees of potency. Here, we give an overview of the current knowledge on p75NTR in stem cells, ranging from embryonic to adult stem cells, and cancer stem cells. In an attempt to address its potential role in the control of stem cell biology, the molecular mechanisms underlying p75NTR signaling in different models are also highlighted. p75NTR-mediated functions include survival, apoptosis, migration, and differentiation, and depend on cell type, (pro)neurotrophin binding, interacting transmembrane co-receptors expression, intracellular adaptor molecule availability, and post-translational modifications, such as regulated proteolytic processing. It is therefore conceivable that p75NTR can modulate cell-fate decisions through its highly ramified signaling pathways. Thus, elucidating the potential implications of p75NTR activity as well as the underlying molecular mechanisms of p75NTR will shed new light on the biology of both normal and cancer stem cells.  相似文献   

8.
The epidermal growth factor family of receptor tyrosine kinases (ErbBs) plays essential roles in regulating cell proliferation, survival, differentiation and migration. The ErbB receptors carry out both redundant and restricted functions in mammalian development and in the maintenance of tissues in the adult mammal. Loss of regulation of the ErbB receptors underlies many human diseases, most notably cancer. Our understanding of the function and complex regulation of these receptors has fueled the development of targeted therapeutic agents for human malignancies in the last 15 years. Here we review the biology of ErbB receptors, including their structure, signaling, regulation, and roles in development and disease, then briefly touch on their increasing roles as targets for cancer therapy.  相似文献   

9.
10.
Formation of appropriate neural circuits depends on a complex interplay between extracellular guiding cues and intracellular signaling events that result in alterations of cytoskeletal dynamics and a neurite growth response. Surface-expressed cell adhesion molecules (CAMs) interact with the surroundings via the extracellular domain and bind to the cytoskeleton via their intracellular domain. In addition, several CAMs induce signaling events via direct interactions with intracellular proteins or via interactions with cell surface receptors. Thus, CAMs are obvious candidates for transmitting extracellular guidance cues to intracellular events and thereby regulating neurite outgrowth. In this review, we focus on two CAMs, the neural cell adhesion molecule (NCAM) and N-cadherin, and their ability to mediate signaling associated with a neurite outgrowth response. In particular, we will focus on direct interaction between NCAM and N-cadherin with a number of intracellular partners, as well as on their interaction with the fibroblast growth factor receptor (FGFR). Received 23 May 2008; received after revision 14 July 2008; accepted 21 July 2008  相似文献   

11.
Role of Sam68 as an adaptor protein in signal transduction   总被引:3,自引:0,他引:3  
Sam68, the substrate of Src in mitosis, belongs to the family of RNA binding proteins. Sam68 contains consensus sequences to interact with other proteins via specific domains. Thus, Sam68 has various proline-rich sequences to interact with SH3 domain-containing proteins. Moreover, Sam68 also has a C-terminal domain rich in tyrosine residues that is a substrate for tyrosine kinases. Tyrosine phosphorylation of Sam68 promotes its interaction with SH2 containing proteins. The association of Sam68 with SH3 domain-containing proteins, and its tyrosine phosphorylation may negatively regulate its RNA binding activity. The presence of these consensus sequences to interact with different domains allows this protein to participate in signal transduction pathways triggered by tyrosine kinases. Thus, Sam68 participates in the signaling of T cell receptors, leptin and insulin receptors. In these systems Sam68 is tyrosine phosphorylated and recruited to specific signaling complexes. The participation of Sam68 in signaling suggests that it may function as an adaptor molecule, working as a dock to recruit other signaling molecules. Finally, the connection between this role of Sam68 in protein-protein interaction with RNA binding activity may connect signal transduction of tyrosine kinases with the regulation of RNA metabolism.Received 16 July 2004; received after revision 12 August 2004; accepted 18 August 2004  相似文献   

12.
In this review, we summarize the structure and function of the scavenger receptor family of proteins including class A (type I and II macrophage scavenger receptors, MARCO), class B (CD36, scavenger receptor class BI), mucinlike (CD68/macrosialin, dSR-CI) and endothelial (LOX-1) receptors. Two motifs have been identified as ligand-binding domains a charged collagen structure of type I and II receptors, and an immunodominant domain of CD36. These structures can recognize a wide range of negatively charged macromolecules, including oxidized low-density lipoproteins, damaged or apoptotic cells, and pathogenic microorganisms. After binding, these ligands can be either internalized by endocytosis or phagocytosis, or remain at the cell surface and mediate adhesion or lipid transfer through caveolae. Under physiological conditions, scavenger receptors serve to scavenge or clean up cellular debris and other related materials, and they play a role in host defence. In pathological states, they mediate the recruitment, activation and transformation of macrophages and other cells which may be related to the development of atherosclerosis and to disorders caused by the accumulation of denatured materials, such as Alzheimer's disease. Received 17 September 1997; received after revision 16 March 1998; accepted 17 March 1998  相似文献   

13.
The termination of heptahelical receptor signaling is a multilevel process coordinated, in large part, by members of the arrestin family of proteins. Arrestin binding to agonist-occupied receptors promotes desensitization by interrupting receptor-G protein coupling, while simultaneously recruiting machinery for receptor endocytosis, vesicular trafficking, and receptor fate determination. By simultaneously binding other proteins, arrestins also act as ligand-regulated scaffolds that recruit protein and lipid kinase, phosphatase, phosphodiesterase, and ubiquitin ligase activity into receptor-based multiprotein ‘signalsome’ complexes. Arrestin-binding thus ‘switches’ receptors from a transient G protein-coupled state to a persistent arrestin-coupled state that continues to signal as the receptor transits intracellular compartments. While it is clear that signalsome assembly has profound effects on the duration and spatial characteristics of heptahelical receptor signals, the physiologic functions of this novel signaling mechanism are poorly understood. Growing evidence suggests that signalsomes regulate such diverse processes as endocytosis and exocytosis, cell migration, survival, and contractility.  相似文献   

14.
Plexin transmembrane receptors and their semaphorin ligands, as well as their co-receptors (Neuropilin, Integrin, VEGFR2, ErbB2, and Met kinase) are emerging as key regulatory proteins in a wide variety of developmental, regenerative, but also pathological processes. The diverse arenas of plexin function are surveyed, including roles in the nervous, cardiovascular, bone and skeletal, and immune systems. Such different settings require considerable specificity among the plexin and semaphorin family members which in turn are accompanied by a variety of cell signaling networks. Underlying the latter are the mechanistic details of the interactions and catalytic events at the molecular level. Very recently, dramatic progress has been made in solving the structures of plexins and of their complexes with associated proteins. This molecular level information is now suggesting detailed mechanisms for the function of both the extracellular as well as the intracellular plexin regions. Specifically, several groups have solved structures for extracellular domains for plexin-A2, -B1, and -C1, many in complex with semaphorin ligands. On the intracellular side, the role of small Rho GTPases has been of particular interest. These directly associate with plexin and stimulate a GTPase activating (GAP) function in the plexin catalytic domain to downregulate Ras GTPases. Structures for the Rho GTPase binding domains have been presented for several plexins, some with Rnd1 bound. The entire intracellular domain structure of plexin-A1, -A3, and -B1 have also been solved alone and in complex with Rac1. However, key aspects of the interplay between GTPases and plexins remain far from clear. The structural information is helping the plexin field to focus on key questions at the protein structural, cellular, as well as organism level that collaboratoria of investigations are likely to answer.  相似文献   

15.
Phosphoinositides and signal transduction   总被引:17,自引:0,他引:17  
Phosphoinositides comprise a family of eight minor membrane lipids which play important roles in many signal transducing pathways in the cell. Signaling through various phosphoinositides has been shown to mediate cell growth and proliferation, apoptosis, cytoskeletal changes, insulin action and vesicle trafficking. A number of advances in signal transduction in the last decade has resulted in the discovery of a growing list of proteins which directly interact with high affinity and specificity with distinct phosphoinositides. Equally important, a number of phosphoinositide binding domains such as the pleckstrin homology domain have emerged as critical mediators of phosphoinositide signaling. Here, recent advances in phosphoinositide signaling are discussed. The aim of this review is to highlight particularly exciting advances made in the field over the last few years. The regulation of phosphoinositide metabolism by lipid kinases, phosphatases and phospholipases is reviewed, and considerable emphasis is placed on phosphoinositide-binding proteins. Finally, the role of these lipids in regulating signaling pathways and cell function is described.  相似文献   

16.
Notch cell interaction mechanism governs cell fate decisions in many different cell contexts throughout the lifetime of all Metazoan species. It links the fate of one cell to that of its neighbors through cell-to-cell contacts, and binding of Notch receptors expressed on one cell to their membrane bound ligands on an adjacent cell. Environmental cues, such as growth factors and extracellular matrix molecules, superimpose a dynamic regulation on this canonical Notch signaling pathway. In this review, we will focus on Notch signaling in the vertebrate vascular and nervous systems and examine its role in angiogenesis, neurogenesis, and neurovascular interactions. We will also highlight the molecular relationships of the Notch pathway with vascular endothelial growth factors (VEGFs) and their high-affinity tyrosine kinase VEGF receptors, key regulators of both angiogenesis and neurogenesis.  相似文献   

17.
The modular nature of apoptotic signaling proteins   总被引:9,自引:0,他引:9  
Apoptosis, initiated by a variety of stimuli, is a physiological process that engages a well-ordered signaling cascade, eventually leading to the controlled death of the cell. The most extensively studied apoptotic stimulus is the binding of death receptors related to CD95 (Fas/Apo1) by their respective ligands. During the last years, a considerable number of proteins have been identified which act together in the receptor-proximal part of the signaling pathway. Based on localized regions of sequence similarity, it has been predicted that these proteins consist of several independently folding domains. In several cases these predictions have been confirmed by structural studies; in other cases they are at least supported by experimental data. This review focuses on the three most widespread domain families found in the apoptotic signaling proteins: the death domain, the death effector domain and the caspase recruitment domain. The recently discovered analogies between these domains, both in structure and in function, have shed some light on the overall architecture of the pathway leading from death receptor ligation to the activation of caspases and eventually to the apoptotic phenotype. Received 8 October 1998; received after revision 8 January 1999; accepted 8 January 1999  相似文献   

18.
The mammalian kidney develops from the ureteric bud and the metanephric mesenchyme. In mice, the ureteric bud invades the metanephric mesenchyme at day E10.5 and begins to branch. The tips of the ureteric bud induce the metanephric mesenchyme to condense and form the cap mesenchyme. Some cells of this cap mesenchyme undergo a mesenchymal-to-epithelial transition and differentiate into renal vesicles, which further develop into nephrons. The developing kidney expresses Fibroblast growth factor (Fgf)1, 7, 8, 9, 10, 12 and 20 and Fgf receptors Fgfr1 and Fgfr2. Fgf7 and Fgf10, mainly secreted by the metanephric mesenchyme, bind to Fgfr2b of the ureteric bud and induce branching. Fgfr1 and Fgfr2c are required for formation of the metanephric mesenchyme, however the two receptors can substitute for one another. Fgf8, secreted by renal vesicles, binds to Fgfr1 and supports survival of cells in the nascent nephrons. Fgf9 and Fgf20, expressed in the metanephric mesenchyme, are necessary to maintain survival of progenitor cells in the cortical region of the kidney. FgfrL1 is a novel member of the Fgfr family that lacks the intracellular tyrosine kinase domain. It is expressed in the ureteric bud and all nephrogenic structures. Targeted deletion of FgfrL1 leads to severe kidney dysgenesis due to the lack of renal vesicles. FgfrL1 is known to interact mainly with Fgf8. It is therefore conceivable that FgfrL1 restricts signaling of Fgf8 to the precise location of the nascent nephrons. It might also promote tight adhesion of cells in the condensed metanephric mesenchyme as required for the mesenchymal-to-epithelial transition.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号