首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transport, capture and exocytosis of single synaptic vesicles at active zones   总被引:22,自引:0,他引:22  
Zenisek D  Steyer JA  Almers W 《Nature》2000,406(6798):849-854
To sustain high rates of transmitter release, synaptic terminals must rapidly re-supply vesicles to release sites and prime them for exocytosis. Here we describe imaging of single synaptic vesicles near the plasma membrane of live ribbon synaptic terminals. Vesicles were captured at small, discrete active zones near the terminal surface. An electric stimulus caused them to undergo rapid exocytosis, seen as the release of a fluorescent lipid from the vesicles into the plasma membrane. Next, vesicles held in reserve about 20 nm from the plasma membrane advanced to exocytic sites, and became release-ready 250 ms later. Apparently a specific structure holds vesicles at an active zone to bring v-SNAREs and t-SNAREs, the proteins that mediate vesicle fusion, within striking distance of each other, and then allows the triggered movement of such vesicles to the plasma membrane.  相似文献   

2.
Sun JY  Wu XS  Wu LG 《Nature》2002,417(6888):555-559
During synaptic transmission, neurotransmitter-laden vesicles fuse with the presynaptic membrane and discharge their contents into the synaptic cleft. After fusion, the vesicular membrane is retrieved by endocytosis for reuse. This recycling mechanism ensures a constant supply of releasable vesicles at the nerve terminal. The kinetics of endocytosis have been measured mostly after intense or non-physiological stimulation. Here we use capacitance measurements to resolve the fusion and retrieval of single and multiple vesicles following mild physiological stimulation at a mammalian central synapse. The time constant of endocytosis after single vesicle fusion was 56 ms; after a single action potential or trains at < or = 2 Hz it was about 115 ms, but increased gradually to tens of seconds as the frequency and the number of action potentials increased. These results indicate that an increase in the rate of exocytosis at the active zone induces a decrease in the rate of endocytosis. Existing models, including inhibition of endocytosis by Ca(2+), could not account for these results our results suggest that an accumulation of unretrieved vesicles at the plasma membrane slows endocytosis. These findings may resolve the debate about the dependence of endocytosis kinetics on the stimulation frequency, and suggest a potential role of regulation of endocytosis in short-term synaptic depression.  相似文献   

3.
Neurotransmitters are released by synaptic vesicle fusion at the active zone. The active zone of a synapse mediates Ca2+-triggered neurotransmitter release, and integrates presynaptic signals in regulating this release. Much is known about the structure of active zones and synaptic vesicles, but the functional relation between their components is poorly understood. Here we show that RIM1alpha, an active zone protein that was identified as a putative effector for the synaptic vesicle protein Rab3A, interacts with several active zone molecules, including Munc13-1 (ref. 6) and alpha-liprins, to form a protein scaffold in the presynaptic nerve terminal. Abolishing the expression of RIM1alpha in mice shows that RIM1alpha is essential for maintaining normal probability of neurotransmitter release, and for regulating release during short-term synaptic plasticity. These data indicate that RIM1alpha has a central function in integrating active zone proteins and synaptic vesicles into a molecular scaffold that controls neurotransmitter release.  相似文献   

4.
A vertebrate neurotoxin, alpha-latrotoxin, from black widow spider venom causes synaptic vesicle exocytosis and neurotransmitter release from presynaptic nerve terminals. Although the mechanism of action of alpha-latrotoxin is not known, it does require binding of alpha-latrotoxin to a high-affinity receptor on the presynaptic plasma membrane. The alpha-latrotoxin receptor seems to be exclusively at the presynaptic plasmamembrane. Here we report that the alpha-latrotoxin receptor specifically binds to a synaptic vesicle protein, synaptotagmin, and modulates its phosphorylation. Synaptotagmin is a synaptic vesicle-specific membrane protein that binds negatively charged phospholipids and contains two copies of a putative Ca(2+)-binding domain from protein kinase C (the C2-domain), suggesting a regulatory role in synaptic vesicle fusion. Our findings suggest that a physiological role of the alpha-latrotoxin receptor may be the docking of synaptic vesicles at the active zone. The direct interaction of the alpha-latrotoxin receptor with a synaptic vesicle protein also suggests a mechanism of action for this toxin in causing neurotransmitter release.  相似文献   

5.
M Zhen  Y Jin 《Nature》1999,401(6751):371-375
At synaptic junctions, specialized subcellular structures occur in both pre- and postsynaptic cells. Most presynaptic termini contain electron-dense membrane structures, often referred to as active zones, which function in vesicle docking and release. The components of those active zones and how they are formed are largely unknown. We report here that a mutation in the Caenorhabditis elegans syd-2 (for synapse-defective) gene causes a diffused localization of several presynaptic proteins and of a synaptic-vesicle membrane associated green fluorescent protein (GFP) marker. Ultrastructural analysis revealed that the active zones of syd-2 mutants were significantly lengthened, whereas the total number of vesicles per synapse and the number of vesicles at the prominent active zones were comparable to those in wild-type animals. Synaptic transmission is partially impaired in syd-2 mutants. syd-2 encodes a member of the liprin (for LAR-interacting protein) family of proteins which interact with LAR-type (for leukocyte common antigen related) receptor proteins with tyrosine phosphatase activity (RPTPs). SYD-2 protein is localized at presynaptic termini independently of the presence of vesicles, and functions cell autonomously. We propose that SYD-2 regulates the differentiation of presynaptic termini in particular the formation of the active zone, by acting as an intracellular anchor for RPTP signalling at synaptic junctions.  相似文献   

6.
Willig KI  Rizzoli SO  Westphal V  Jahn R  Hell SW 《Nature》2006,440(7086):935-939
Synaptic transmission is mediated by neurotransmitters that are stored in synaptic vesicles and released by exocytosis upon activation. The vesicle membrane is then retrieved by endocytosis, and synaptic vesicles are regenerated and re-filled with neurotransmitter. Although many aspects of vesicle recycling are understood, the fate of the vesicles after fusion is still unclear. Do their components diffuse on the plasma membrane, or do they remain together? This question has been difficult to answer because synaptic vesicles are too small (approximately 40 nm in diameter) and too densely packed to be resolved by available fluorescence microscopes. Here we use stimulated emission depletion (STED) to reduce the focal spot area by about an order of magnitude below the diffraction limit, thereby resolving individual vesicles in the synapse. We show that synaptotagmin I, a protein resident in the vesicle membrane, remains clustered in isolated patches on the presynaptic membrane regardless of whether the nerve terminals are mildly active or intensely stimulated. This suggests that at least some vesicle constituents remain together during recycling. Our study also demonstrates that questions involving cellular structures with dimensions of a few tens of nanometres can be resolved with conventional far-field optics and visible light.  相似文献   

7.
Hu K  Carroll J  Fedorovich S  Rickman C  Sukhodub A  Davletov B 《Nature》2002,415(6872):646-650
Release of neurotransmitter occurs when synaptic vesicles fuse with the plasma membrane. This neuronal exocytosis is triggered by calcium and requires three SNARE (soluble-N-ethylmaleimide-sensitive factor attachment protein receptors) proteins: synaptobrevin (also known as VAMP) on the synaptic vesicle, and syntaxin and SNAP-25 on the plasma membrane. Neuronal SNARE proteins form a parallel four-helix bundle that is thought to drive the fusion of opposing membranes. As formation of this SNARE complex in solution does not require calcium, it is not clear what function calcium has in triggering SNARE-mediated membrane fusion. We now demonstrate that whereas syntaxin and SNAP-25 in target membranes are freely available for SNARE complex formation, availability of synaptobrevin on synaptic vesicles is very limited. Calcium at micromolar concentrations triggers SNARE complex formation and fusion between synaptic vesicles and reconstituted target membranes. Although calcium does promote interaction of SNARE proteins between opposing membranes, it does not act by releasing synaptobrevin from synaptic vesicle restriction. Rather, our data suggest a mechanism in which calcium-triggered membrane apposition enables syntaxin and SNAP-25 to engage synaptobrevin, leading to membrane fusion.  相似文献   

8.
Klyachko VA  Jackson MB 《Nature》2002,418(6893):89-92
The vesicles that package neurotransmitters fall into two distinct classes, large dense-core vesicles (LDCVs) and small synaptic vesicles, the coexistence of which is widespread in nerve terminals. High resolution capacitance recording reveals unitary steps proportional to vesicle size. Measurements of capacitance steps during LDCV and secretory granule fusion in endocrine and immune cells have provided important insights into exocytosis; however, extending these measurements to small synaptic vesicles has proven difficult. Here we report single vesicle capacitance steps in posterior pituitary nerve terminals. These nerve terminals contain neuropeptide-laden LDCVs, as well as microvesicles. Microvesicles are similar to synaptic vesicles in size, morphology and molecular composition, but their contents are unknown. Capacitance steps of two characteristic sizes, corresponding with microvesicles and LDCVs, were detected in patches of nerve terminal membrane. Both types of vesicles fuse in response to depolarization-induced Ca(2+) entry. Both undergo a reversible fusion process commonly referred to as 'kiss-and-run', but only rarely. Fusion pores seen during microvesicle kiss-and-run have a conductance of 19 pS, 11 times smaller than LDCV fusion pores. Thus, LDCVs and microvesicles use structurally different intermediates during exocytosis.  相似文献   

9.
M S Perin  V A Fried  G A Mignery  R Jahn  T C Südhof 《Nature》1990,345(6272):260-263
Neurotransmitters are released at synapses by the Ca2(+)-regulated exocytosis of synaptic vesicles, which are specialized secretory organelles that store high concentrations of neurotransmitters. The rapid Ca2(+)-triggered fusion of synaptic vesicles is presumably mediated by specific proteins that must interact with Ca2+ and the phospholipid bilayer. We now report that the cytoplasmic domain of p65, a synaptic vesicle-specific protein that binds calmodulin contains an internally repeated sequence that is homologous to the regulatory C2-region of protein kinase C (PKC). The cytoplasmic domain of recombinant p65 binds acidic phospholipids with a specificity indicating an interaction of p65 with the hydrophobic core as well as the headgroups of the phospholipids. The binding specificity resembles PKC, except that p65 also binds calmodulin, placing the C2-regions in a context of potential Ca2(+)-regulation that is different from PKC. This is a novel homology between a cellular protein and the regulatory domain of protein kinase C. The structure and properties of p65 suggest that it may have a role in mediating membrane interactions during synaptic vesicle exocytosis.  相似文献   

10.
Synapsin I is a synaptic vesicle-associated phosphoprotein that is involved in the modulation of neurotransmitter release. Ca2+/calmodulin-dependent protein kinase II, which phosphorylates two sites in the carboxy-terminal region of synapsin I, causes synapsin I to dissociate from synaptic vesicles and increases neurotransmitter release. Conversely, the dephosphorylated form of synapsin I, but not the form phosphorylated by Ca2+/calmodulin-dependent protein kinase II, inhibits neurotransmitter release. The amino-terminal region of synapsin I interacts with membrane phospholipids, whereas the C-terminal region binds to a protein component of synaptic vesicles. Here we demonstrate that the binding of the C-terminal region of synapsin I involves the regulatory domain of a synaptic vesicle-associated form of Ca2+/calmodulin-dependent protein kinase II. Our results indicate that this form of the kinase functions both as a binding protein for synapsin I, and as an enzyme that phosphorylates synapsin I and promotes its dissociation from the vesicles.  相似文献   

11.
Low-molecular-weight GTP-binding proteins are strong candidates for regulators of membrane traffic. In yeast, mutations in the sec4 or ypt1 genes encoding small GTP-binding proteins inhibit constitutive membrane flow at the plasma membrane or Golgi complex, respectively. It has been suggested that membrane fusion-fission events are regulated by cycling of small GTP-binding proteins between a membrane-bound and free state, but although most of these small proteins are found in both soluble and tightly membrane-bound forms, there is no direct evidence to support such cycling. In rat brain a small GTP-binding protein, rab3A, is exclusively associated with synaptic vesicles, the secretory organelles of nerve terminals. Here we use isolated nerve terminals to study the fate of rab3A during synaptic vesicle exocytosis. We find that rab3A dissociates quantitatively from the vesicle membrane after Ca2(+)-dependent exocytosis and that this dissociation is partially reversible during recovery after stimulation. These results are direct evidence for an association-dissociation cycle of a small GTP-binding protein during traffic of its host membrane.  相似文献   

12.
N Stockbridge  W N Ross 《Nature》1984,309(5965):266-268
Calcium channels are found in the presynaptic terminals of neurones, where they have a key role in synaptic transmission. They are also found in the somata of many cells, in dendrites and along a few axons. In no cell is the actual distribution of these channels known in detail, because there are no known toxins or other agents suitable for labelling calcium channels, and the current through these channels is usually too small to be quantified with extracellular electrodes. However, several experiments have suggested that the density of the channels is less in the axon than in the cell body or terminal region. Here we have used the indicator dye Arsenazo III in conjunction with an array of photodetectors to examine the spatial influx of calcium in the presynaptic terminal region of the giant barnacle, Balanus nubilus. In these cells, calcium entry occurs in a restricted region less than 50 micron in length, which corresponds closely to the region of synaptic contact with second-order cells. Outside this area the magnitude of calcium entry is reduced at least 50-fold. With reasonable assumptions it follows that the calcium channel density is equally localized. In addition, we demonstrate that these cells have a calcium-activated potassium conductance. Since calcium entry is restricted to the synaptic zone, this conductance must be effective only in this region.  相似文献   

13.
Y Dan  M M Poo 《Nature》1992,359(6397):733-736
It is well known that transmitter secretion requires specialized secretory organelles, the synaptic vesicles, for the packaging, storage and exocytotic release of the transmitter. Here we report that when acetylcholine (ACh) is loaded into an isolated Xenopus myocyte, there is spontaneous quantal release of ACh from the myocyte which results in activation of its own surface ACh channels and the appearance of membrane currents resembling miniature endplate currents. This myocyte secretion probably reflects Ca(2+)-regulated exocytosis of ACh-filled cytoplasmic compartments. Furthermore, step depolarization of the myocyte membrane triggers evoked ACh release from the myocyte with a weak excitation-secretion coupling. These findings suggest that quantal transmitter secretion does not require secretory pathways unique to neurons and that the essence of presynaptic differentiation may reside in the provision of transmitter supply and modification of the preexisting secretion pathway.  相似文献   

14.
Griesinger CB  Richards CD  Ashmore JF 《Nature》2005,435(7039):212-215
Ribbon-type synapses in inner hair cells of the mammalian cochlea encode the complexity of auditory signals by fast and tonic release through fusion of neurotransmitter-containing vesicles. At any instant, only about 100 vesicles are tethered to the synaptic ribbon, and about 14 of these are docked to the plasma membrane, constituting the readily releasable pool. Although this pool contains about the same number of vesicles as that of conventional synapses, ribbon release sites operate at rates of about two orders of magnitude higher and with submillisecond precision. How these sites replenish their vesicles so efficiently remains unclear. We show here, using two-photon imaging of single release sites in the intact cochlea, that preformed vesicles derived from cytoplasmic vesicle-generating compartments participate in fast release and replenishment. Vesicles were released at a maximal initial rate of 3 per millisecond during a depolarizing pulse, and were replenished at a rate of 1.9 per millisecond. We propose that such rapid resupply of vesicles enables temporally precise and sustained release rates. This may explain how the first auditory synapse can encode with indefatigable precision without having to rely on the slow, local endocytic vesicle cycle.  相似文献   

15.
Communication within the nervous system is mediated by Ca2+-triggered fusion of synaptic vesicles with the presynaptic plasma membrane. Genetic and biochemical evidence indicates that synaptotagmin I may function as a Ca2+ sensor in neuronal exocytosis because it can bind Ca2+ and penetrate into lipid bilayers. Chronic depolarization or seizure activity results in the upregulation of a distinct and unusual isoform of the synaptotagmin family, synaptotagmin IV. We have identified a Drosophila homologue of synaptotagmin IV that is enriched on synaptic vesicles and contains an evolutionarily conserved substitution of aspartate to serine that abolishes its ability to bind membranes in response to Ca2+ influx. Synaptotagmin IV forms hetero-oligomers with synaptotagmin I, resulting in synaptotagmin clusters that cannot effectively penetrate lipid bilayers and are less efficient at coupling Ca2+ to secretion in vivo: upregulation of synaptotagmin IV, but not synaptotagmin I, decreases evoked neurotransmission. These findings indicate that modulating the expression of synaptotagmins with different Ca2+-binding affinities can lead to heteromultimers that can regulate the efficiency of excitation-secretion coupling in vivo and represent a new molecular mechanism for synaptic plasticity.  相似文献   

16.
Nishimune H  Sanes JR  Carlson SS 《Nature》2004,432(7017):580-587
Synapse formation requires the differentiation of a functional nerve terminal opposite a specialized postsynaptic membrane. Here, we show that laminin beta2, a component of the synaptic cleft at the neuromuscular junction, binds directly to calcium channels that are required for neurotransmitter release from motor nerve terminals. This interaction leads to clustering of channels, which in turn recruit other presynaptic components. Perturbation of this interaction in vivo results in disassembly of neurotransmitter release sites, resembling defects previously observed in an autoimmune neuromuscular disorder, Lambert-Eaton myasthenic syndrome. These results identify an extracellular ligand of the voltage-gated calcium channel as well as a new laminin receptor. They also suggest a model for the development of nerve terminals, and provide clues to the pathogenesis of a synaptic disease.  相似文献   

17.
A S Verkman  W I Lencer  D Brown  D A Ausiello 《Nature》1988,333(6170):268-269
The mechanism by which vasopressin rapidly and dramatically increases the water permeability of target epithelial cell membranes is thought to involve a cycle of exo- and endocytosis during which vesicles carrying 'water channels' are successively inserted into, and removed from the apical plasma membrane of epithelial cells. Clusters of intramembranous particles, visible by freeze-fracture electron microscopy and presumed to represent water channels, appear on apical membranes in parallel with increased transepithelial water flow. In the collecting duct, these clusters are located in clathrin-coated pits which are subsequently internalized. There has been no direct evidence, however, that subcellular membranes in vasopressin-sensitive epithelia contain functional water channels. In this report, we have used fluorophores that are sensitive to volume and do not pass through membranes to label and to measure directly the osmotic water permeability of endocytosed vesicles isolated from renal papilla. We present direct evidence that vasopressin induces the appearance of a population of endocytic vesicles whose limiting membranes contain water channels.  相似文献   

18.
Shi J  Krishnamoorthy G  Yang Y  Hu L  Chaturvedi N  Harilal D  Qin J  Cui J 《Nature》2002,418(6900):876-880
Large-conductance (BK type) Ca(2+)-dependent K(+) channels are essential for modulating muscle contraction and neuronal activities such as synaptic transmission and hearing. BK channels are activated by membrane depolarization and intracellular Ca(2+) and Mg(2+) (refs 6-10). The energy provided by voltage, Ca(2+) and Mg(2+) binding are additive in activating the channel, suggesting that these signals open the activation gate through independent pathways. Here we report a molecular investigation of a Mg(2+)-dependent activation mechanism. Using a combined site-directed mutagenesis and structural analysis, we demonstrate that a structurally new Mg(2+)-binding site in the RCK/Rossman fold domain -- an intracellular structural motif that immediately follows the activation gate S6 helix -- is responsible for Mg(2+)-dependent activation. Mutations that impair or abolish Mg(2+) sensitivity do not affect Ca(2+) sensitivity, and vice versa. These results indicate distinct structural pathways for Mg(2+)- and Ca(2+)-dependent activation and suggest a possible mechanism for the coupling between Mg(2+) binding and channel opening.  相似文献   

19.
RIM1alpha is required for presynaptic long-term potentiation.   总被引:8,自引:0,他引:8  
Two main forms of long-term potentiation (LTP)-a prominent model for the cellular mechanism of learning and memory-have been distinguished in the mammalian brain. One requires activation of postsynaptic NMDA (N-methyl d-aspartate) receptors, whereas the other, called mossy fibre LTP, has a principal presynaptic component. Mossy fibre LTP is expressed in hippocampal mossy fibre synapses, cerebellar parallel fibre synapses and corticothalamic synapses, where it apparently operates by a mechanism that requires activation of protein kinase A. Thus, presynaptic substrates of protein kinase A are probably essential in mediating this form of long-term synaptic plasticity. Studies of knockout mice have shown that the synaptic vesicle protein Rab3A is required for mossy fibre LTP, but the protein kinase A substrates rabphilin, synapsin I and synapsin II are dispensable. Here we report that mossy fibre LTP in the hippocampus and the cerebellum is abolished in mice lacking RIM1alpha, an active zone protein that binds to Rab3A and that is also a protein kinase A substrate. Our results indicate that the long-term increase in neurotransmitter release during mossy fibre LTP may be mediated by a unitary mechanism that involves the GTP-dependent interaction of Rab3A with RIM1alpha at the interface of synaptic vesicles and the active zone.  相似文献   

20.
J Wilschut  D Papahadjopoulos 《Nature》1979,281(5733):690-692
Ca2+ has a central role in various cellular phenomena involving membrane fusion. However, little is known about the mechanisms involved. Model membrane systems such as phospholipid vesicles have been used extensively to study the mechanism of membrane fusion at the molecular level. For example, phosphatidylserine (PS) vesicles have been shown to undergo massive aggregation and structural rearrangements on additon of Ca2+, with eventual formation of large cochleate structures. Although these structures do not retain appreciable internal volume, their formation has been proposed to result from fusion of the initial vesicles. The significance of the PS--Ca2+ system as a model for biological membrane fusion has been questioned recently by Ginsberg. Based on the observation that divalent cations induce the release of contents from PS vesicles but fail to bring about the uptake of a marker from the medium, he proposes that the vesicles are ruptured completely during interaction with divalent cations and reassemble subsequently to form large non-vesicular structures. The present study demonstrates that the question raised by Ginsberg is not particularly relevant to the phenomenon concerned, and that his experimental observations do not allow the exclusive conclusion that Ca2+ induces lysis of PS vesicles rather than fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号