首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
应用ANSYS/LS-DYNA的聚能装药侵彻仿真时,药型罩材料模型的选择有多种,对仿真结果之间的差别进行了比较.在炸药、药型罩结构等条件相同的情况下,选择Johnson-Cook与Steinberg两种材料模型,利用ANSYS/LS-DYNA软件对聚能射流侵彻靶板进行仿真.对比仿真结果,得出两种模型都能很好地模拟射流的形成及侵彻过程,且各时刻射流头部最高速度差值很小.  相似文献   

2.
本文采用数值模拟方法,对药型罩结构进行优化设计,建立了金属射流形成过程计算模型,采用自适应网格技术,计算分析了不同锥角和壁厚对聚能装药射流速度的影响. 设计了射流穿靶实验,采用靶网测速法测量了金属射流的速度,通过观察金属射流形成的杵体及侵彻靶板的孔径,获得了金属射流的直径. 结果表明设计的聚能装药射流在炸高40 mm处的平均速度为7800 m/s,射流直径为7.55 mm左右.  相似文献   

3.
结合理论与数值模拟,对3种不同形状药型罩活性聚能侵彻体的成型行为开展了研究.数值模拟结果表明,在聚能效应下,球缺罩和大锥角圆锥罩形成尾部带有碎片云的类杆状活性聚能侵彻体,而小锥角圆锥罩则形成活性射流.相比于活性射流,类杆状活性聚能侵彻体速度较低,但凝聚性较好.进一步结合活性材料反应动力学方程,对活性聚能侵彻体成型激活反应行为进行分析.分析结果表明:活性射流激活区位于杵体外壁、射流头部和轴线附近;随炸高增加,激活区内活性材料反应不断加剧,特别是射流头部和轴线附近材料的反应,将导致活性射流膨胀发散,不利于侵彻;而类杆状活性聚能侵彻体激活区域主要集中在尾部碎片区和杆尾中心部位,化学反应对其影响相对较小.  相似文献   

4.
利用LS-DYNA有限元分析软件,研究典型聚能装药射流与杵体对应初始药型罩的材料分配关系,并依据该分配关系设计了一种新型变壁厚双层药型罩。数值模拟和试验结果表明:利用有效射流与药型罩材料分配关系设计的新型变壁厚铜铝双层药型罩与等壁厚单铜罩形成的射流形态基本相似,但新型变壁厚铜铝双层药型罩形成射流的头部速度达到6 853 m/s,比等壁厚单铜罩射流头部速度提高10.2%。新型铜/铝变壁厚双层药型罩形成射流的性能要优于等壁厚单层铜罩射流的性能。  相似文献   

5.
针对轴向侵彻的环形聚能战斗部药型罩内外壁非对称质量的情况,提出了环型药型罩设计的新思路,即内外壁在压跨碰撞点保持等动量原则,建立环形聚能药型罩的质量补偿设计方法. 对内外变壁厚和单壁等厚2种类型的环型药型罩进行了设计计算和侵彻实验,分析比较了两种结构药型罩的侵彻效果. 结果表明,采用该方法设计的药型罩侵彻效果有明显改善.  相似文献   

6.
钛合金药型罩聚能装药射流成型与侵彻实验研究   总被引:1,自引:1,他引:1  
为研究轻质合金药型罩的侵彻性能,采用X光照相技术对两种大锥角钛合金药型罩的射流成型及其对钢靶的侵彻行为进行了实验研究. 结果表明,140°锥角药型罩产生的射流近似为EFP,其对钢靶的侵彻半径大,但侵深较浅. 120°锥角药型罩在中心起爆时,形成杆式射流;而环形起爆时,则形成典型射流,其侵彻深度比中心起爆有较大提高. 此外与铜质药型罩相比,其侵彻孔径得到明显提高. 因此,采用轻质合金和环形起爆,可以在保证大锥角药型罩较高能量利用率的同时增大开孔孔径和侵彻深度.   相似文献   

7.
双层药型罩侵彻半无限靶板的数值仿真研究   总被引:2,自引:0,他引:2  
为了研究双层药型罩参数对其侵彻半无限靶板的影响,使用有限元软件AUTODYN,对双层药型罩的射流形成、延伸和破甲进行了数值仿真研究,得出了不同厚度比情况下炸高对侵深和孔径的影响规律.通过分析确定:厚度比为1时铝铜双层罩侵彻性能最好.给出了厚度比为1时多种材料的不同组合对侵深和孔径的影响规律,研究了相同质量条件下不同材料组合对侵深的影响.仿真结果为对进一步研究双层药型罩成型装药战斗部提供了依据.  相似文献   

8.
基于一种药型罩材料为铝的环形聚能装药结构,通过Autodyn软件模拟不同起爆方式(起爆环直径D1)和不同长径比(L/D)的装药,计算得到环形射流的成型过程和速度分布曲线.分析数值模拟结果发现:环形射流成型过程主要受长径比影响,长径比较小时射流发生内偏,长径比较大时射流发生外偏;射流轴向速度主要受长径比影响,长径比越大轴向速度越大,头部轴向速度最大相差约700 m/s;射流径向速度主要受起爆方式影响,平均径向速度最大相差为220 m/s,起爆环直径和长径比在较小或较大时,射流径向速度梯度较大;结合射流成型和速度结果,D1=0.5D、L/D=1.0时射流综合性能较好.侵彻混凝土板试验的通孔直径为装药直径的2.6倍,数值模拟结果与试验结果误差为7.7%,验证了计算模型及算法的合理性.   相似文献   

9.
药型罩对聚能射流速度影响的数值模拟分析   总被引:1,自引:0,他引:1  
为了研究药型罩对聚能射流破甲威力的影响,利用LS-DYNA动力有限元计算程序对聚能射流形成过程进行了数值模拟.在此基础上着重应用数值模拟方法分析了药型罩锥角、药型罩壁厚、药型罩形状对聚能射流速度的影响,得到了射流速度与药型罩的关系,射流速度随药型罩锥角的减小而增加,随药型罩壁厚的增加而降低,喇叭形罩比圆锥罩速度大.从而为聚能射流药型罩的设计提供参考.  相似文献   

10.
赵书超  陈国光  仝哲  张玲娜  侯丹  张辉 《科技信息》2013,(4):140-140,135
本文采用Ls_dyna有限元分析软件对半球型药型罩聚能装药爆炸形成杆式聚能侵彻体及其对混凝土的侵彻作用进行了数值模拟,结合威力效应实验,对其成型及侵彻过程进行了研究,获得了半球型药型罩装药结构形成侵彻体的形状、头尾速度及它们对混凝土靶的侵彻参量。初步获得半球型罩对混凝土目标的毁伤特性,为同类装药优化设计提供参考。  相似文献   

11.
为解决传统高聚物基活性罩聚能装药侵彻深度严重不足这一瓶颈性问题,提出了一种活性-铜复合罩聚能装药结构,并采用数值模拟和实验相结合的方法,研究了活性-铜罩射流成形及侵彻钢靶增强行为.仿真表明,内层铜罩主要形成高速前驱射流首先侵彻钢靶,活性材料外罩大部分形成杵体且可以随进侵孔内部.实验结果表明,与传统单一活性射流相比,活性-铜射流对钢靶造成的侵深更大,且侵彻性能与进入侵孔内的活性材料质量显著受炸高影响.实验与仿真对比表明,活性材料的爆燃反应会导致侵彻过程提前终止,可能的机理是其化学反应在侵孔内会形成超压,造成铜射流严重失稳,致使剩余射流无法再继续侵彻.  相似文献   

12.
采用数值模拟和地面静爆实验相结合的方法,对活性药型罩聚能装药作用混凝土靶毁伤效应问题进行了研究.在Autodyn数值模拟中,活性药型罩爆炸驱动形成射流及侵彻混凝土靶过程采用二维欧拉算法,活性射流侵入混凝土内爆破过程采用三维SPH算法,活性射流冲击反应由Powder Burn模型描述,通过算法转换实现分步连续数值模拟.数值模拟结果表明,与金属射流相比,活性射流终点效应受炸高的影响更敏感,在约为1.0倍装药直径炸高下,活性射流可显著发挥侵爆联合毁伤优势,有效爆破深度约为6.5倍装药直径,当炸高超过2.0倍装药直径后,侵爆毁伤效应显著减弱.进一步与地面静爆实验结果相比,两者基本相吻合,验证了数值模拟的有效性.   相似文献   

13.
线型聚能装药射流形成过程的数值模拟   总被引:11,自引:1,他引:11  
聚能射流形式过程的研究对于正确认识射流侵彻理论具有重要的意义。根据线型聚能药的结构特点,利用DYNA3D显式有限元程序对线型聚能射流的形成过程进行了数值模拟。模型探讨了线型聚能装药爆炸的诸多重要物理特性,如药型罩的压垮、射流形成和拉伸以及体杵体的“体缩”现象。还分析了线型聚能射流形成过程中速度、密度、温度等参数的分布特性,得出了射流有逆向速度梯度和杵体存在“体缩”现象听结论,其结果与现有的理论分成果基本一致。  相似文献   

14.
起爆方式对聚能射流性能影响的数值分析   总被引:14,自引:0,他引:14  
应用LS-DYNA有限元程序,采用ALE方法对聚能装药在点起爆、面起爆、正向环形起爆和逆向环形起爆等不同起爆方式下的射流形成过程进行了三维数值模拟.计算结果表明,起爆方式对射流性能有着重要的影响;不同的起爆方式在装药中产生不同的爆轰波形,当爆轰波波形与药型罩外表面越接近时,罩微元的压垮速度越高,导致射流头部速度越高;环形起爆形成的射流头部速度高于面起爆的,面起爆高于点起爆的,并且随着起爆直径的增大,面起爆与环形起爆所形成的射流头部速度逐渐增大.  相似文献   

15.
聚能射流问题的数值模拟   总被引:9,自引:0,他引:9  
基于多物质流体的Euler算法,用面向对象的C 语言自行编制了M-MMIC通用多物质二维流体弹塑性程序,对锥形聚能装药形成过程进行了数值模拟,并用VISC2D可视化软件对射流的形成过程进行动画演示,计算结果符合聚能射流形成的物理现象和规律,说明该物理模型和数值算法比较合理,可用于指导聚能破甲战斗部的工程设计。  相似文献   

16.
聚能射流引爆炸药的数值模拟研究   总被引:1,自引:0,他引:1  
采用显式有限元程序对聚能射流引爆裸露和带壳装药的过程进行了数值模拟分析。分析了射流引爆裸露装药和带壳装药两者间的不同作用过程,对射流引爆炸药的现象进行了探讨。结果表明,聚能射流引爆裸露装药取决于射流本身特性参数,而引爆带壳装药则与壳体性质密切相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号