首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
模糊神经网络在变压器故障诊断中的应用   总被引:5,自引:0,他引:5       下载免费PDF全文
提出并研究了模糊神经网络在变压器故障诊断中的应用问题。以油色谱分析数据作为输入,故障类型作为输出,建立了邦联诊断的模糊网络模型。故障实例的测试结果表明了这咎方法的有效性。  相似文献   

2.
张勇  张艳丽  冯泽涛 《科技信息》2007,(24):279-280
及时和正确地诊断出电力变压器的故障,对维护电力系统的正常安全运行具有非常重要的意义。本文把基于模糊理论和神经网络的模糊神经网络模型应用于变压器的故障诊断中,实例分析结果表明该方法能有效提高变压器故障诊断的正确性。  相似文献   

3.
4.
提出一种结合动态模糊神经网络和混沌优化算法的故障诊断方法,将混沌变量引入模糊神经网络结构和参数的优化搜索.利用混沌优化的动态模糊神经网络建立变压器故障诊断模型,此模型不仅能对模糊规则而且能对输入变量的重要性做出评价,从而使得每个输入变量和模糊规则都可根据误差减少率进行修正.仿真结果表明,混沌动态模糊神经网络算法精度高、迭代步骤少、收敛快,对识别和预测变压器状态具有较高的精度和效率,并可方便有效地应用到其他领域.  相似文献   

5.
在分析粒子群参数特征的基础上,提出自适应粒子群优化算法,使用自适应粒子群优化BP神经网络,建立基于自适应粒子群优化BP神经网络(PSO-BP)的变压器故障诊断系统.通过对52组训练样本和28组测试样本的仿真实验,可知自适应PSO-BP法能提高变压器故障诊断的准确率,有效减小网络的误差精度.  相似文献   

6.
蚁群神经网络在变压器故障诊断中的应用   总被引:1,自引:0,他引:1  
针对蚁群算法收敛速度慢的问题, 提出了一种改进方法, 通过为蚁群算法增加一种收敛因子, 使其在信息素的全局更新中为每次迭代产生的最优路径赋予额外的信息素增量, 降低了算法陷入局部最优解的可能性。分析了改进蚁群算法的收敛性, 并对其寻优能力进行了测试, 结果表明, 改进蚁群算法具有较强的寻优能力和较快的收敛速度。用改进蚁群算法优化神经网络并将其应用于变压器的故障诊断, 与BP神经网络诊断结果对比, 蚁群算法优化神经网络具有更快的收敛速度和更高的诊断精度。  相似文献   

7.
针对故障诊断技术智能化的发展方向,结合模拟电路的特点,将模糊逻辑和神经网络融合在一起,研究了一种基于模糊神经网络的故障诊断算法,给出该算法的典型模型和结构,并通过实例研究了这种模型在模拟电路故障诊断中的应用。  相似文献   

8.
为了保证煤矿安全开采,并提高煤矿瓦斯涌出量的预测精度,提出了改进思维进化算法优化BP神经网络的模型预测新方法。在思维进化算法中加入精英反向学习策略增加算法的全局搜索能力,在趋同操作中引入粒子群算法避免重复搜索,以此实现对BP神经网络的初始权值和阈值的全局寻优,并通过矿井监测到的各项历史数据进行验证。结果表明:与BP神经网络模型和MEA-BP神经网络模型相比较,该模型的预测精度更高,泛化能力更强。该模型的平均相对变动值为0.00116,平均相对误差为0.81%,均方根误差为0.0576,有效提高了对瓦斯涌出量的预测精度,提升了煤矿安全生产技术。  相似文献   

9.
介绍了产生式系统与神经网络结合的一种方法──神经网络专家系统(NNES)。根据变压器故障诊断的特点,建造了用于电力变压器故障诊断的NNES。该系统充分发挥了NN与ES各自的优点,为变压器故障诊断创造了一条新的思路。  相似文献   

10.
递阶结构进化神经网络在故障诊断中的应用   总被引:3,自引:0,他引:3  
主要研究进化神经网络在旋转机械故障诊断中的应用 ,提出了一种基于递阶结构的遗传算法与进化规划相结合的神经网络学习新算法 ,利用该算法可以同时对网络进行结构优化和权重求解。通过旋转机械故障分类应用实例 ,与传统的 BP训练算法作了比较 ,证明基于递阶结构的进化神经网络算法不仅在权重训练方面比传统 BP训练算法更加快速稳定 ,避免陷入局部极小点 ,而且同时对网络结构进行了优化 ,得到了结构更为简捷的旋转机械故障分类网络  相似文献   

11.
一种基于模糊神经网络的变压器故障检测   总被引:3,自引:0,他引:3  
阐述了基于模糊神经网络变压器故障检测的方法及数学模型.从传统的BAM 网络入手,结合模糊理论,根据变压器油的气相色谱分析,运用基于模糊Hebbian 学习律的模糊联想记忆(FAM),进行变压器故障类型和严重程度检测的方法步骤.模型算法分为两个步骤:激励阶段和冲突解决阶段.试验表明,该方法精度较高,应用方便.  相似文献   

12.
针对多功能车辆总线具有随机性和不确定性导致故障诊断准确率较低的问题, 设计一种基于模糊神经网络的MVB故障诊断算法. 首先根据MVB故障类型给出诊断模型, 然后采用减法聚类生成数量较少的模糊规则, 最后采用T-S模糊神经网络对故障进行分类. 在MATLAB环境下对该算法的拟合能力及诊断准确率进行仿真分析的结果表明, 该算法简化了模糊神经网络结构, 有效提高了故障诊断准确率.  相似文献   

13.
针对变压器故障类型的特征,结合油中气体分析法及三比值法,应用BP神经网络对变压器进行故障诊断。根据BP神经网络的概念、结构和算法原理,探讨了不同隐含层的神经元个数对神经网络训练性能的影响。通过对仿真结果的分析与测试,结果表明BP神经网络对变压器故障诊断具有较好的应用效果。  相似文献   

14.
为了解决变压器故障诊断中诊断效率低的问题,本文对萤火虫算法(FA)进行了改进,并与小波神经网络(WNN)相结合应用于变压器故障诊断中。小波神经网络结构简单,预测精度高,收敛速度快,但是网络参数不好选择,易陷入局部最优。本文结合混沌算法、粒子群算法、可变步长的思想来改进萤火虫算法,用于优化小波神经网络的参数,再将处理后的数据带入神经网络中进行训练与诊断。实验结果表明,该算法与BP神经网络、支持向量机、小波神经网络、遗传算法改进的小波神经网络和粒子群算法改进的小波神经网络相比诊断正确率均有所提高。  相似文献   

15.
SOFM神经网络具有强大的非线性映射能力和高度的自组织和自学习能力,将SOFM神经网络应用于变压器的故障诊断.利用改进的罗杰斯三比值法获取变压器故障诊断的特征向量,建立了SOFM网络故障诊断模型,并对模型进行训练.为了检验模型的实际诊断能力,以变压器的4种典型故障诊断为例进行仿真实验.仿真结果表明:SOFM神经网络能够根据获胜神经元在竞争层的位置对变压器故障进行判断,诊断准确率高,收敛速度快,泛化能力强,表明基于SOFM网络的变压器的故障诊断是一种行之有效的方法.  相似文献   

16.
电力变压器油中溶解气体的色谱分析是变压器故障诊断的重要方法,通过该方法可以间接了解变压器的运行状态和内部潜在故障.人工神经网络已经成功地应用于电力变压器故障诊断,但学习样本数多和输入输出关系复杂性减慢了网络的收敛速度.为解决此问题,将用遗传算法改进的小波神经网络应用于电力变压器故障诊断,克服小波算法易于陷入局部极小、收敛速度慢等缺点.  相似文献   

17.
基于聚类和模糊神经网络的故障诊断   总被引:2,自引:0,他引:2  
模糊神经网络能够发挥模糊逻辑和神经网络的特性,在武器装备的故障诊断中应用越来越广泛。文中提出了一种基于聚类和模糊神经网络的故障诊断模型,该模型首先通过基于关系度的聚类方法得到模糊神经网络的初始结构,并用梯度下降法对网络的参数进行修改,以得到泛化能力好的诊断网络。仿真结果表明该模型是有效的。  相似文献   

18.
针对神经网络结构难以优化的问题,本文采用思维进化计算(MEC)算法和BP算法相结合的方法来动态优化神经网络结构。随机产生网络结构,对每一结构,利用BP算法评价神经网络结构优劣,找到局部最优结构,再通过MEC算法中的趋同、异化操作,找出全局最优结构。仿真结果说明了算法的有效性。  相似文献   

19.
根据变压器故障诊断的特点,采用神经网络的误差逆传播算法,运用气相色谱分析方法,建立故障诊断的神经网络模型.运用人工神经网络的学习能力,通过对训练数据的学习,判断变压器的故障类型.  相似文献   

20.
在模糊逻辑与神经网络融合的基础上,引入补偿运算单元,构成补偿模糊神经网络,使网络从初始定义的模糊规则进行训练,再动态的优化模糊规则,提高网络的容错率和稳定性.针对网络训练的不同阶段对学习速率的不同要求,提出一种具有分段可变学习速率的补偿模糊神经系统,可以提高网络的整体性能,实现动态的、全局优化的运算.故障诊断仿真研究表明:模型具有更好的收敛特性,能够大大的缩短训练时间,减少训练步数,提高误差精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号