首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pallid (pa) is 1 of 13 platelet storage pool deficiency (SPD) mouse mutants. pa animals suffer from prolonged bleeding time, pigment dilution, kidney lysosomal enzyme elevation, serum alpha1-antitrypsin activity deficiency and abnormal otolith formation. As with other mouse mutants of this class, characterization of pa mice suggests a defect in organelle biosynthesis. Here we describe the physical mapping, positional cloning, and mutational and functional analysis of the gene that is defective in pa mice. It encodes a ubiquitously expressed, highly charged 172-amino-acid protein (termed pallidin) with no homology to known proteins. We detected a nonsense mutation at codon 69 of this gene in the pallid mutant. In a yeast two-hybrid screen, we discovered that pallidin interacts with syntaxin 13, a t-SNARE protein that mediates vesicle-docking and fusion. We confirmed this interaction by co-immunoprecipitation assay. Immunofluorescence studies corroborate that the cellular distribution of pallidin overlaps that of syntaxin 13. Whereas the mocha and pearl SPD mutants have defects in Ap-3, our findings suggest that pa SPD mutants are defective in a more downstream event of vesicle-trafficking: namely, vesicle-docking and fusion.  相似文献   

2.
Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disorder characterized by oculocutaneous albinism and a storage pool deficiency due to an absence of platelet dense bodies. Lysosomal ceroid lipofuscinosis, pulmonary fibrosis and granulomatous colitis are occasional manifestations of the disease. HPS occurs with a frequency of one in 1800 in north-west Puerto Rico due to a founder effect. Several non-Puerto Rican patients also have mutations in HPS1, which produces a protein of unknown function. Another gene, ADTB3A, causes HPS in the pearl mouse and in two brothers with HPS-2 (refs. 11,12). ADTB3A encodes a coat protein involved in vesicle formation, implicating HPS as a disorder of membrane trafficking. We sought to identify other HPS-causing genes. Using homozygosity mapping on pooled DNA of 6 families from central Puerto Rico, we localized a new HPS susceptibility gene to a 1.6-cM interval on chromosome 3q24. The gene, HPS3, has 17 exons, and a putative 113.7-kD product expected to reveal how new vesicles form in specialized cells. The homozygous, disease-causing mutation is a large deletion and represents the second example of a founder mutation causing HPS on the small island of Puerto Rico. We also present an allele-specific assay for diagnosing individuals heterozygous or homozygous for this mutation.  相似文献   

3.
Charcot-Marie-Tooth disease type 1A (CMT1A) is associated with a DNA duplication at chromosome 17p11.2. In view of the point mutation in the gene for peripheral myelin protein pmp-22/gas-3 in Trembler mice, a murine model for CMT1A, we have analysed whether this gene is altered in CMT1A. Here we show that the human homologue of the murine pmp-22 gene is located within the CMT1A DNA duplication, which is a direct repeat and does not interrupt the coding region of PMP-22. Expression of PMP-22 in CMT1A fibroblasts is similar to expression in control fibroblasts. Increased gene dosage or altered PMP-22 expression in the peripheral nervous system are therefore possible mechanisms by which PMP-22 is involved in CMT1A.  相似文献   

4.
5.
6.
May-Hegglin anomaly (MHA) is an autosomal dominant macrothrombocytopenia of unclear pathogenesis characterized by thrombocytopenia, giant platelets and leukocyte inclusions. Studies have indicated that platelet structure and function are normal, suggesting a defect in megakaryocyte fragmentation. The disorder has been linked to chromosome 22q12-13. Here we screen a candidate gene in this region, encoding non-muscle myosin heavy chain A (MYH9), for mutations in ten families. In each family, we identified one of three sequence variants within either the -helical coiled coil or the tailpiece domain that co-segregated with disease status. The E1841K mutation was found in 5 families and occurs at a conserved site in the rod domain. This mutation was not found in 40 normal individuals. Four families had a nonsense mutation that resulted in truncation of most of the tailpiece. One family had a T1155I mutation present in an affected mother and daughter, but not in the mother's parents, thus representing a new mutation. Among the 30 affected individuals, 21 unaffected individuals and 13 spouses in the 10 families, there was correlation of a variant of MYH9 with the presence of MHA. The identification of MYH9 as the disease gene for MHA establishes the pathogenesis of the disorder, should provide further insight into the processes of normal platelet formation and may facilitate identification of the genetic basis of related disorders.  相似文献   

7.
The murine Elo (eye lens obsolescence) mutation confers a dominant phenotype characterized by malformation of the eye lens. The mutation maps to chromosome 1, in close proximity to the gamma E-crystallin gene which is the 3'-most member of the gamma-crystallin gene cluster. We have analysed the sequence of this gene from the Elo mouse and identified a single nucleotide deletion which destroys the fourth and last "Greek key" motif of the protein. This mutation is tightly associated with the phenotype, as no recombination was detected in 274 meioses. In addition, the mutant mRNA is present in the affected lens, providing further support for our hypothesis that the deletion is responsible for the dominant Elo phenotype.  相似文献   

8.
The epilepsies are a common, clinically heterogeneous group of disorders defined by recurrent unprovoked seizures. Here we describe identification of the causative gene in autosomal-dominant partial epilepsy with auditory features (ADPEAF, MIM 600512), a rare form of idiopathic lateral temporal lobe epilepsy characterized by partial seizures with auditory disturbances. We constructed a complete, 4.2-Mb physical map across the genetically implicated disease-gene region, identified 28 putative genes (Fig. 1) and resequenced all or part of 21 genes before identifying presumptive mutations in one copy of the leucine-rich, glioma-inactivated 1 gene (LGI1) in each of five families with ADPEAF. Previous studies have indicated that loss of both copies of LGI1 promotes glial tumor progression. We show that the expression pattern of mouse Lgi1 is predominantly neuronal and is consistent with the anatomic regions involved in temporal lobe epilepsy. Discovery of LGI1 as a cause of ADPEAF suggests new avenues for research on pathogenic mechanisms of idiopathic epilepsies.  相似文献   

9.
Mucolipidosis type IV (MLIV) is an autosomal recessive, neurodegenerative, lysosomal storage disorder characterized by psychomotor retardation and ophthalmological abnormalities including corneal opacities, retinal degeneration and strabismus. Most patients reach a maximal developmental level of 12?15 months. The disease was classified as a mucolipidosis following observations by electron microscopy indicating the lysosomal storage of lipids together with water-soluble, granulated substances. Over 80% of the MLIV patients diagnosed are Ashkenazi Jews, including severely affected and mildly affected patients. The gene causing MLIV was previously mapped to human chromosome 19p13.2-13.3 in a region of approximately 1 cM (ref. 7). Haplotype analysis in the MLIV gene region of over 70 MLIV Ashkenazi chromosomes indicated the existence of two founder chromosomes among 95% of the Ashkenazi MLIV families: a major haplotype in 72% and a minor haplotype in 23% of the MLIV chromosomes (ref. 7, and G.B., unpublished data). The remaining 5% are distinct haplotypes found only in single patients. The basic metabolic defect causing the lysosomal storage in MLIV has not yet been identified. Thus, positional cloning was an alternative to identify the MLIV gene. We report here the identification of a new gene in this human chromosomal region in which MLIV-specific mutations were identified.  相似文献   

10.
Thoracic aortic aneurysms and dissections are a main feature of connective tissue disorders, such as Marfan syndrome and Loeys-Dietz syndrome. We delineated a new syndrome presenting with aneurysms, dissections and tortuosity throughout the arterial tree in association with mild craniofacial features and skeletal and cutaneous anomalies. In contrast with other aneurysm syndromes, most of these affected individuals presented with early-onset osteoarthritis. We mapped the genetic locus to chromosome 15q22.2-24.2 and show that the disease is caused by mutations in SMAD3. This gene encodes a member of the TGF-β pathway that is essential for TGF-β signal transmission. SMAD3 mutations lead to increased aortic expression of several key players in the TGF-β pathway, including SMAD3. Molecular diagnosis will allow early and reliable identification of cases and relatives at risk for major cardiovascular complications. Our findings endorse the TGF-β pathway as the primary pharmacological target for the development of new treatments for aortic aneurysms and osteoarthritis.  相似文献   

11.
Sialic acid storage diseases (SASD, MIM 269920) are autosomal recessive neurodegenerative disorders that may present as a severe infantile form (ISSD) or a slowly progressive adult form, which is prevalent in Finland (Salla disease). The main symptoms are hypotonia, cerebellar ataxia and mental retardation; visceromegaly and coarse features are also present in infantile cases. Progressive cerebellar atrophy and dysmyelination have been documented by magnetic resonance imaging (ref. 4). Enlarged lysosomes are seen on electron microscopic studies and patients excrete large amounts of free sialic acid in urine. A H+/anionic sugar symporter mechanism for sialic acid and glucuronic acid is impaired in lysosomal membranes from Salla and ISSD patients. The locus for Salla disease was assigned to a region of approximately 200 kb on chromosome 6q14-q15 in a linkage study using Finnish families. Salla disease and ISSD were further shown to be allelic disorders. A physical map with P1 and PAC clones was constructed to cover the 200-kb area flanked by the loci D6S280 and D6S1622, providing the basis for precise physical positioning of the gene. Here we describe a new gene, SLC17A5 (also known as AST), encoding a protein (sialin) with a predicted transport function that belongs to a family of anion/cation symporters (ACS). We found a homozygous SLC17A5 mutation (R39C) in five Finnish patients with Salla disease and six different SLC17A5 mutations in six ISSD patients of different ethnic origins. Our observations suggest that mutations in SLC17A5 are the primary cause of lysosomal sialic acid storage diseases.  相似文献   

12.
13.
14.
We report the first identified mutation in the gene encoding human cytochrome c (CYCS). Glycine 41, invariant throughout eukaryotes, is substituted by serine in a family with autosomal dominant thrombocytopenia caused by dysregulated platelet formation. The mutation yields a cytochrome c variant with enhanced apoptotic activity in vitro. Notably, the family has no other phenotypic indication of abnormal apoptosis, implying that cytochrome c activity is not a critical regulator of most physiological apoptosis.  相似文献   

15.
Aniridia is a semidominant disorder in which development of the iris, lens, cornea and retina is disturbed. The mouse mutation Small eye (Sey), which has been proposed as a model for aniridia, results from defects in Pax-6, a gene containing paired-box and homeobox motifs that is specifically expressed in the developing eye and brain. To test the role of PAX6 in aniridia, we isolated human cDNA clones and determined the intron-exon structure of this gene. PAX6 spans 22 kilobases and is divided into 14 exons. Analysis of DNA from 10 unrelated aniridia patients revealed intragenic mutations in three familial and one sporadic case. These findings indicate that the human aniridia and murine Small eye phenotypes arise from homologous defects in PAX6.  相似文献   

16.
17.
Protein-protein interaction analyses have uncovered a ciliary and basal body protein network that, when disrupted, can result in nephronophthisis (NPHP), Leber congenital amaurosis, Senior-L?ken syndrome (SLSN) or Joubert syndrome (JBTS). However, details of the molecular mechanisms underlying these disorders remain poorly understood. RPGRIP1-like protein (RPGRIP1L) is a homolog of RPGRIP1 (RPGR-interacting protein 1), a ciliary protein defective in Leber congenital amaurosis. We show that RPGRIP1L interacts with nephrocystin-4 and that mutations in the gene encoding nephrocystin-4 (NPHP4) that are known to cause SLSN disrupt this interaction. RPGRIP1L is ubiquitously expressed, and its protein product localizes to basal bodies. Therefore, we analyzed RPGRIP1L as a candidate gene for JBTS and identified loss-of-function mutations in three families with typical JBTS, including the characteristic mid-hindbrain malformation. This work identifies RPGRIP1L as a gene responsible for JBTS and establishes a central role for cilia and basal bodies in the pathophysiology of this disorder.  相似文献   

18.
19.
The Indiana kindred variant of Gerstmann-Str?ussler-Scheinker disease has amyloid plaques that contain prion protein (PrP), but is atypical because neurofibrillary tangles like those of Alzheimer disease are present. To map the position of the disease causing gene, we used three markers for linkage analyses. A missense mutation at codon 198 of the PrP gene (PRNP) is found in all definitely affected individuals and yields a maximum lod score of 6.37 (theta = 0). The disease also is concordant with the two other PRNP-region markers. These results demonstrate tight linkage of the disease-causing gene to PRNP and support the hypothesis that the codon 198 mutation is the cause of IK-GSS. Our studies also suggest that methionine/valine heterozygotes at PRNP codon 129 have a later age of onset of the disease than codon 129 valine/valine homozygotes.  相似文献   

20.
Restriction enzyme-generated siRNA (REGS) vectors and libraries   总被引:11,自引:0,他引:11  
Small interfering RNA (siRNA) technology facilitates the study of loss of gene function in mammalian cells and animal models, but generating multiple siRNA vectors using oligonucleotides is slow, inefficient and costly. Here we describe a new, enzyme-mediated method for generating numerous functional siRNA constructs from any gene of interest or pool of genes. To test our restriction enzyme-generated siRNA (REGS) system, we silenced a transgene and two endogenous genes and obtained the predicted phenotypes. REGS generated on average 34 unique siRNAs per kilobase of sequence. REGS enabled us to create enzymatically a complex siRNA library (>4 x 10(5) clones) from double-stranded cDNA encompassing known and unknown genes with 96% of the clones containing inserts of the appropriate size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号