首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
采用物理-化学活化法,研究以东营某污水厂剩余污泥为原料的污泥基活性炭制备工艺.结合热重分析(TGA)、比表面测试(BET)、孔径分布(BJH)和扫描电镜(SEM)等表征方法,考察不同工艺条件下污泥基活性炭孔道结构的变化,将此活性炭作为有机染料废水吸附剂进行亚甲基蓝去除效果实验.结果表明:以3 mol/L氯化锌溶液为活化...  相似文献   

2.
以聚丙烯腈(PAN)和N,N-二甲基甲酰胺(DMF)为原料,通过静电纺丝-CO2活化法制备PAN基活性碳纳米纤维,探讨活化温度对活性碳纳米纤维孔结构及孔径分布的影响,并研究了所制备的PAN基活性碳纳米纤维对亚甲基蓝(MB)的吸附性能.结果表明,随着活化温度的升高,PAN基活性碳纳米纤维的比表面积(SBET)、总孔容(Vtotal)和微孔容(Vmi)均增大,当活化温度达到950℃时,SBET、Vtotal、Vαmi、Vtmi和VDmi分别高达1 484.5 m2·g-1、0.709 cm3·g-1、0.680 cm3·g-1、0.666 cm3·g-1和0.659cm3·g-1;Langmuir模型较Freundlich模型更适合描述所制备的PAN基活性碳纳米纤维对MB的吸附过程,且ACF950在(25±1)℃对MB的饱和吸附量高达270 mg·g-1.  相似文献   

3.
染色废水对环境具有巨大危害。利用青霉素菌渣为原料制备氮掺杂活性炭,研究其对水中亚甲基蓝的吸附机理,并用响应曲面法优化活性炭对水中亚甲基蓝的吸附机理。研究结果表明,所制备的活性炭孔隙结构发达,比表面积达到了1 640.39 m2/g,活性炭表面含羟基等官能团。亚甲基蓝吸附过程符合伪二级动力学模型和Langmuir等温吸附模型。建立的响应面模型合理可靠,最佳吸附条件为吸附时间138 min、吸附温度30℃、pH为8。在此条件下,活性炭对亚甲基蓝的吸附量达到了332.90 mg/g,与模型理论预测值335.76 mg/g基本吻合。  相似文献   

4.
以生物质废弃物酸角壳为原料,通过KOH活化制备酸角壳基活性炭(HHC),采用傅里叶变换红外光谱、扫描电子显微镜表征。酸角壳基活性炭吸附亚甲基蓝(MB)的研究表明:吸附是自发进行,吸热,增加混乱度有利于吸附进行;准二级吸附动力学方程及Langmuir等温吸附模型能较好拟合吸附过程。以3 mol/L KOH为电解液,在三电极体系下测定HHC制备的超级电容器电极的循环伏安、恒流充放电、循环性能和交流阻抗。结果显示,电流密度为5 A/g时,首次放电比电容为100 F/g,循环20次后容量保持率为100%,具有较好的循环性能,适合用作超级电容器电极材料。  相似文献   

5.
大麻杆活性炭对染料吸附性能的研究   总被引:4,自引:0,他引:4  
以天然大麻杆为原料,采用磷酸活化法制备大麻杆活性炭。利用低温氮吸附对样品的比表面积与孔结构进行了表征,并利用亚甲基蓝与甲基橙两种染料对活性炭在液相中的吸附行为进行了研究。结果表明,样品的比表面积与中孔孔容随着活化温度的升高而增大,在500℃时达到最大值1325.73m2/g,随后由于磷酸过度活化导致结构坍塌致使各参数有所降低;在25℃下,大麻杆活性炭对亚甲基蓝与甲基橙的吸附等温线均遵循Langmu ir方程,单层吸附量分别达到471.698mg/g和363.64mg/g,吸附量主要受微孔孔容、染料分子尺寸及染料分子与活性炭表面作用力三者的共同影响。吸附动力学能够很好的符合准二级动力学方程,且亚甲基蓝的吸附速率高于甲基橙。  相似文献   

6.
聚苯乙烯基多孔树脂的制备及其吸附性能   总被引:1,自引:0,他引:1  
以正庚烷为致孔剂,明胶为分散剂,采用悬浮聚合法制备了交联型聚苯乙烯基多孔吸附树脂颗粒.通过在苯乙烯与二乙烯苯的聚合体系中加入不同比例的甲基丙烯酸甲酯或丙烯酸甲酯等极性单体,调整吸附树脂的结构与极性.以亚甲基蓝为吸附模型分子,探讨了其溶液浓度、溶液pH值和温度等因素对树脂吸附过程的影响.研究结果表明:吸附过程主要取决于树脂的孔径大小,只有当树脂孔径合适时其比表面积才会对吸附起主要作用;当甲基丙烯酸甲酯质量分数为2%或丙烯酸甲酯为5%时,得到的树脂对亚甲基蓝有较好的吸附效果,其吸附平衡等温线符合Freund lich方程.  相似文献   

7.
以黄麻纤维和黄麻杆为原料,采用磷酸活化法制得两种黄麻基活性炭作为吸附剂,以亚甲基蓝染料溶液为吸附质,探讨了染料溶液初始质量浓度、活性炭投加量、吸附时间、水浴温度、染料溶液pH值等因素对黄麻基活性炭吸附性能的影响.结果表明:随着染料溶液初始质量浓度的增加,亚甲基蓝去除率逐渐降低,吸附量逐渐增大;随着活性炭投加量的增加、吸附时间的延长或染料溶液pH值的增加,亚甲基蓝去除率和吸附量均呈现逐渐增大的变化趋势;水浴温度对亚甲基蓝去除率和吸附量影响较小.黄麻杆活性炭因具有较大的比表面积和总孔容,其对亚甲基蓝的去除率和吸附量高于黄麻纤维活性炭.  相似文献   

8.
开展烧结聚乙烯活性炭(PE-AC)吸附亚甲基蓝(MB)动力学研究。通过考察MB初始浓度及时间对吸附作用的影响,表征PE-AC的吸附特性,主?捎肔angmuir、Freundilch等温模型及准一动力学方程、准二级动力学方程和颗粒内扩散方程对亚甲蓝吸附等温线及吸附动力学进行分析。结果表明:吸附初期的吸附作用随温度和浓度的增加而显著增强,Freundlich方程能更好地描述吸附等温线。吸附初期为准一级动力学过程,吸附后期为准二级动力学过程。吸附热力学研究发现吸附过程为自发吸热过程,且ΔH θ和ΔS θ分别为10.875 kJ/mol 和0.0515 kJ/(mol·K)。  相似文献   

9.
聚丙烯腈、N,N-二甲基甲酰胺和钛酸四丁脂水解溶胶的混合液通过静电纺丝、预氧化、炭化、活化制备TiO2/活性炭复合纳米纤维膜.基于静态吸附试验,考察了不同TiO2/活性炭复合纳米纤维膜投加量、亚甲基蓝初始质量浓度、温度、pH值条件下,TiO2/活性炭复合纳米纤维膜对亚甲基蓝的吸附性能,并用Langmuir等温吸附方程、Freundlich等温吸附方程、准一级动力学方程,准二级动力学方程、颗粒内扩散方程进行了拟合,结果表明,Freundlich经验公式、准二级动力学方程能较好地描述TiO2/活性炭复合纳米纤维膜对亚甲基蓝的吸附行为.研究表明,吸附量随温度升高而增加,吸附效率受颗粒内扩散影响.无论是紫外光还是太阳光照射,TiO2/活性炭复合纳米纤维膜都具有很好的光催化再生性能.  相似文献   

10.
不同方法改性柚皮制备的活性炭吸附亚甲基蓝试验   总被引:1,自引:0,他引:1  
采用不同方法对柚子皮改性后制备活性炭,考察溶液pH值、活性炭投加量、亚甲基蓝初始质量浓度、吸附时间等因素对吸附效果的影响,并对吸附动力学和吸附机理进行了探讨。结果表明,在最佳条件下未改性和采用氯化铝、硫化钠、氢氧化钾改性柚子皮制备的4种活性炭对亚甲基蓝的脱色率分别为84.5%、87.3%、91.1%和95.5%。分析不同活性炭平衡吸附量的值可以得出结论:经过氯化铝和氢氧化钾改性的柚子皮制备的活性炭吸附亚甲基蓝的能力明显提高;4种活性炭对亚甲基蓝的吸附过程均符合准二级动力学模型;氯化铝和氢氧化钾改性柚子皮制备的活性炭表面包含更多的有机官能团,这与活性炭对应较高的亚甲基蓝废水初始质量浓度和高的平衡吸附量是一致的。  相似文献   

11.
研究了水溶液中的溶解氧对苯酚、邻甲酚等在活性炭纤维上吸附的影响.结果表明,无论有氧还是微氧,苯酚和邻甲酚在活性炭纤维上的吸附服从Freundlich等温吸附式,有氧时的Freundlich常数κ值比微氧时大2倍;由于溶解氧的作用,活性炭纤维对酚类化合物的平衡吸附量显增加,酚类在活性炭纤维表面发生氧化聚合作用、生成苯酚的低聚物如二聚物等;改变吸附温度或搅拌溶液也引起苯酚在活性炭纤维上吸附行为的变化,这是因为改变了氧在溶液中的溶解量或在活性炭纤维表面的浓度.溶解氧对亚甲基蓝等在活性炭纤维上的吸附没有影响.  相似文献   

12.
通过对活性碳纤维的气相氧化和液相氧化处理。改变了活性碳纤维的表面酸性和极性.研究了化学改性对活性碳纤维吸附性能的影响.结果表明,改性后的活性碳纤维对SO2的吸附能力明显增强.  相似文献   

13.
KOH活化杨木制备活性炭的特性研究   总被引:1,自引:0,他引:1  
通过热重法对杨木颗粒以及用KOH浸渍后的杨木颗粒进行热解实验,通过TG、DTG、DSC曲线的变化规律,分析在主要失重阶段发生的物理变化、化学变化以及炭得率.结果表明:活化剂KOH中的K+对木材的热解具有催化作用,形成活性炭的温度基本为600,℃,温度高于800,℃时,活性炭发生烧失反应;升温速率对炭得率几乎没有影响;加入活化剂KOH后,提高了炭得率,但是炭得率与活化剂/杨木颗粒的质量比值成反比.  相似文献   

14.
物理活化法制备椰壳活性炭研究   总被引:5,自引:0,他引:5  
以椰壳炭化料为原料采用水蒸气活化法在不同操作条件下制备得到各种椰壳活性炭.分别研究了水蒸气活化实验中活化时间和活化温度对活性炭的得率、活性炭碘值和苯酚吸附值的影响关系.实验结果表明,活化温度是水蒸气活化法制备椰壳活性炭的最重要的影响因素.在实验范围内,水蒸气活化法制备椰壳活性炭时,宜将活化温度选择在850℃左右,活化时间为120min.  相似文献   

15.
文章研究了酸改性、硫酸盐改性对活性碳纤维静态吸苯、吸氨性能的影响。结果表明:经酸改性后活性碳纤维吸附性能比未改性的ACF吸附性能好,经硫酸盐改性后活性碳纤维吸附性能随处理条件的不同而不同。  相似文献   

16.
K2CO3活化法制备椰壳活性炭   总被引:6,自引:0,他引:6  
以椰壳炭化料为原料,采用K2CO3活化法在不同操作条件下制备椰壳活性炭,探讨了K2CO3活化实验中K2CO3与炭化料质量比、活化时间和活化温度对活性炭得率、活性炭亚甲蓝吸附值和苯酚吸附值的影响.实验结果表明,K2CO3与炭化料质量比和活化温度是K2CO3活化法制备椰壳活性炭最重要的影响因素.综合考虑活性炭的得率和活性炭吸附性能受活化操作参数的影响规律,探讨了K2CO3活化法制备椰壳活性炭的最优操作参数,得到了实验范围内的最佳5-艺条件为:K2CO3与炭化料的质量比为2:1,活化温度为800℃左右,活化时间为120min.  相似文献   

17.
运用磷酸浸渍硼酸催化法制备木屑活性炭,并进行了其对水中酸性红的平衡吸附实验.研究结果表明木屑活性炭制备的最佳工艺条件为:磷屑比为1:1,硼酸投加量为3%,活化温度为400℃,该条件下所制备的生物活性炭对酸性红的理论最大吸附量可达到442.40mg/g.相对于Freundlich方程,该活性炭对酸性红的吸附等温线与Langmuir方程拟合的更好.当吸附时间达到2h时活性炭吸附达到平衡,吸附过程能较好的拟合准二级动力学方程,吸附以化学吸附为主.  相似文献   

18.
以城市污水处理厂污泥为原料,研究了氢氧化钾活化-微波加热制备污泥活性炭的工艺条件,考查了固液比、活化剂浓度、浸渍时间和活化时间等因素对活性炭碘吸附值和产率的影响。在单因素试验的基础上采用正交试验,得到试验室条件下微波法制备污泥活性炭的最佳工艺条件,即:固液比1g:1.5mL,氢氧化钾浓度0.40mol.L-1,浸渍时间24h,活化时间420s。此工艺条件下制备的污泥活性炭碘吸附值为537.63 mg.g-1,产率为74.09%。  相似文献   

19.
通过测定在不同的pH下,活性炭对亚甲基兰吸附量的影响,表明了活性炭表面的ζ电位对亚甲基兰的吸附规律起着重要作用.并进行了活性炭对亚甲基兰在不同pH值和不同温度下的吸附动力学和吸附热力学参数的估算.进一步揭示了活性炭在不同pH下对亚甲基兰的吸附机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号