首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 605 毫秒
1.
冶金熔体泡沫演化中的转型   总被引:1,自引:0,他引:1  
通过理论分析和实验验证,证实冶金熔体泡沫演化过程中存在由球状泡沫到多面体泡沫的转型.泡沫转型前的演化速率可由伽利略数Ga定性判断,而泡沫转型后的多面体泡沫破灭阶段,可以用量纲为一的因子Sa来定性判断.应用泡沫转型理论,解释了冶金熔体与常温溶液泡沫衰减过程机理的差异,也给出了内生气源更容易发泡的原因.  相似文献   

2.
研究了泡沫纯铝和泡沫AlSi7Mg0.45的凝固方式及其对孔结构的影响,并讨论了熔体泡沫在凝固过程中的体积变化和孔隙率变化。结果表明:在合适的冷却条件下,纯铝熔体泡沫倾向于逐层凝固,在凝固过程中易形成中心缩孔,AlSi7Mg0.45熔体泡沫倾向于同时凝固,易形成热裂纹;纯铝熔体泡沫在凝固过程中,体积减小,孔隙率增加,而相对于纯铝来说,AlSi7Mg0.45熔体泡沫的体积及孔隙率均有所减小。  相似文献   

3.
对稀土泡沫铝制备过程中的热力学条件进行分析,研究用CaCO3作为发泡剂制备泡沫铝过程中铝熔体中发泡剂的分解、气泡的形成、长大、稳定、消失等热力学过程,采用熔体发泡工艺制备出低成本、结构可控的高强度稀土泡沫铝合金。  相似文献   

4.
闭孔泡沫铝的孔结构控制   总被引:19,自引:1,他引:19  
为适应高技术应用中超轻闭孔泡沫铝对孔结构更高的控制要求,对过去十余年中进行的相关研究工作进行了系统整理,发现了胞体尺寸、孔隙率和孔形貌三者之间的内在关系,确定了孔结构控制的关键步骤和相互关系,建立了熔体发泡法影响孔结构控制的工艺技术框架,结合该框架系统论述了3个关键孔结构控制参数(胞体尺寸、孔隙率和孔形貌)与实际应用、制备技术、工艺过程的关系.研究表明,孔结构演变和制备技术工艺中黏度、发泡时间、凝固方式等诸多因素相互影响,互为因果,使得发泡和凝固过程变得十分复杂,给孔结构控制带来困难.要获得高孔隙率泡沫铝,对于纯铝泡沫,不仅需要根据熔体泡沫化时间与孔隙率的对应关系精确控制孔隙率,而且要在孔隙率一时间平台段适时凝固以控制孔径和均匀性,而对于泡沫铝合金,还需要采用多向凝固模式,克服凝固过程中固一液两相区的附加力场引发的收缩问题.对于新型球形孔泡沫铝合金,则需要进一步控制适量的发泡剂(1.0%)和发泡搅拌时间(100s),使平台段降至低孔隙率阶段.面对高技术领域新的需求,提出的二次发泡法较其他技术在制备异型件方面具有更大的优势,并且其延伸发展技术在多功能大型面板开发上具有进一步发展的潜质.  相似文献   

5.
转炉泡沫渣是气熔渣一金属密切混合的乳浊液,由于其含有大量金属铁,若不能及时有效消除泡沫化,产生的喷溅和双渣、终点倒炉,将导致大量金属铁流失。我厂试用舍一定量灰分(CaO)和焦粉(C),加入适量黏土混匀烘干而成的压渣球。其加入方便,和炉渣反应迅速,能减轻炉渣泡沫化程度,缩短倒炉时间,有助于钢铁料消耗的降低。  相似文献   

6.
TiH2含量对粉末冶金泡沫铝孔结构的影响   总被引:5,自引:0,他引:5  
通过对泡沫铝剖面进行数字图像处理和统计分析,研究了粉末冶金法制备泡沫铝时发泡剂质量分数对孔隙率、孔径标准差及大孔面积率等孔结构参数的影响.实验结果表明,过量的TiH2导致大孔增多、孔结构均匀性降低;TiH2过少则使孔隙率降低,成型性较差.TiH2质量分数在0.2%~0.6%之间时,得到的泡沫铝孔隙率为70%~77%,此时大孔缺陷较少,孔结构均匀细密.采用胞壁熔体在毛细力作用下的流动模型,讨论了熔体泡沫合并大孔形成机制.综合考虑孔隙率、孔隙均匀性和TiH2有效利用率等因素,确定了TiH2的最佳添加范围.  相似文献   

7.
讨论了泡沫铝制备过程中温度的影响,理论上分析了温度与熔体黏度、表面张力和发泡剂的关系,并通过实验探讨温度对泡沫铝孔结构和孔隙率的影响。  相似文献   

8.
通过对析液方程和能量守恒方程的耦合,建立了吹气法生产泡沫铝过程中泡沫铝合金析液与凝固过程的一个数学模型,计算了铝合金体积分数和温度在泡沫铝合金凝固过程中随时间、空间的变化.从数值模拟角度对粘度、表面张力和重力加速度等参数对凝固过程的影响进行了定量分析,模拟结果表明:在干泡沫凝固过程中,析液过程和凝固过程是相互作用的,凝固时间以及凝固后固体体积分数的分布与熔体泡沫析液现象有直接关系,熔体物性参数和生产环境对凝固时间和泡沫的孔隙率有较大影响.  相似文献   

9.
粉煤灰增黏制备泡沫铝材料的研究   总被引:3,自引:1,他引:3  
以粉煤灰为增黏剂,TiH2为发泡剂,将它们先后加入到铝熔体之中并搅拌均匀,进而获得闭孔型泡沫铝材料·结果表明:粉煤灰的加入量在3%~5%范围内可以获得密度较小、孔隙率较高的泡沫铝材料;当粉煤灰颗粒尺寸在61~147μm时,泡沫铝的密度、孔隙率 粉煤灰粒度关系曲线较为平缓,制得的泡沫铝材料胞孔结构较好;在泡沫铝制造过程中用粉煤灰代替金属Ca进行增黏可降低生产成本;在铝熔体中添加粉煤灰,有利于制备强度较高的泡沫铝材料·  相似文献   

10.
《科技智囊》2003,(2):17-17
与引经据典判定目前市场存在泡沫的专家们不同,业内老总大多否认房地产市场已经泡沫化  相似文献   

11.
泡沫铝是一种新型超轻多孔金属,具有超轻、高比强、高比刚、阻尼减振、高冲击能量吸收和优异的热、电、磁性物理和应用性能,实现了结构材料的多功能化,因而展现了广阔的应用前景。泡沫铝可以通过采用熔体发泡法、渗流法、熔模铸造和电镀法、粉末冶金法和吹气法等制备,相应的方法所制备出的泡沫铝具有各自的孔结构,因而可以针对于满足相应的高技术应用需求。  相似文献   

12.
PQ-Ⅰ型泡沫发生器中的喷射系统是以吸入空气与基浆充分混合为目标进行设计的,为克服泡沫泥浆中泡沫直径大小的随机性和提高泡沫泥浆的稳定性,设计了涡轮泡沫分散切割器。  相似文献   

13.
对资产泡沫的形成机制的研究可以从理性投机泡沫理论、非理性泡沫理论、基于信息论和博弈论的泡沫理论、非线性泡沫理论等方面进行总结,对这些研究进行一个简单的文献综述,可以得出结论:资产泡沫成因必须结合多个理论进行分析。  相似文献   

14.
泡沫体系多流态渗流特征试验   总被引:2,自引:2,他引:0  
为研究低张力泡沫体系多流态渗流特征,采用泡沫驱替试验分析泡沫渗流的瞬态和稳态变化特点、泡沫体系流动过程中的高、低干度流态区特征以及两种流态的转化条件。结果表明:泡沫在岩心内是逐渐形成的,当泡沫达到稳态后呈活塞式驱替;泡沫渗流具有多流态特征,在高干度流态区,压力梯度随液相速度增加而增加,压力梯度的对数值与液相速度呈较好的线性关系,而与气相速度关系不大;在低干度流态区,压力梯度随气相速度增加而增加,压力梯度的对数值与气相速度呈一定的线性关系,而与液相速度关系不大。  相似文献   

15.
提出一种采用半固态熔体直接制备泡沫铝合金先驱体的新方法.该方法利用半固态熔体的自身黏度随温度变化的特性,配合相应的半固态搅拌工艺,无需添加增黏剂即可实现氢化钛发泡剂的均匀混合,冷却后可直接获得泡沫铝合金先驱体.文中对于影响先驱体制备质量的熔体温度、搅拌时间、搅拌速度和叶片结构等条件进行了研究.结果表明:当熔体固相率在1%~30%之间时,发泡剂分散性会随着搅拌时间和搅拌速度的增加而提高;当搅拌时间为180 s,搅拌速度为500 r/min时,铝合金先驱体中发泡剂的分散最均匀.  相似文献   

16.
本文对蛋白型泡沫灭火剂、合成型泡沫灭火剂以及几种新型泡沫灭火剂的研究、生产及应用现状进行了分析,并对我国新型泡沫灭火剂未来的发展方向提出了见解,对泡沫灭火剂的研发和推广应用有一定的参考作用。  相似文献   

17.
随着房地产行业的升温,我国房地产经济中的泡沫现象开始出现,为此,本文在列举了我国目前房地产泡沫具体表现的基础上,分析了房地产泡沫的形成原因。  相似文献   

18.
采用液相复合-轧制技术制备不同w○Cu的可发泡预制坯及闭孔泡沫铝材,研究了w○Cu对泡沫铝泡孔结构的影响.结果表明:随着w○Cu的增加,泡孔结构的均匀性增加,孔径减小,泡孔合并产生的大泡孔数量减少,但泡沫体的塌缩和老化特征增强.对比不同w○Cu的预制坯的膨胀曲线,随着w○Cu的增加,预制坯的最大膨胀率先增大后减小,且达到最大膨胀率的发泡时间明显减少.微观结构分析表明:在AlSi9合金中加入Cu,生成了CuAl2O4和CuAl2,CuAl2O4提高熔体的黏度,减小了重力排液及毛细作用的影响,提高了泡沫的稳定性.CuAl2先于AlSi9熔化,在晶界上形成熔池,气泡提前形核长大,使发泡过程提前完成.  相似文献   

19.
泡沫铝发泡过程中气泡的稳定性   总被引:2,自引:0,他引:2  
对采用粉末冶金法制备泡沫铝材料过程中气泡稳定性对发泡效果的影响进行了研究,对影响气泡稳定的因素进行了分析.确定熔体的黏度与氢化钛分解是决定气泡稳定的主要因素.采用在铝硅合金粉末中加钙来增加熔体黏度,控制熔体的表面张力;通过控制氢化钛加入量来控制氢化钛分解释放出氢气的量;控制发泡时间,使发泡在气泡的稳定时段内进行;保持气泡内气体压力与气泡表面张力的平衡,可获得孔结构均匀、密度适合的泡沫铝材料.  相似文献   

20.
泡沫的持液量(h,mg/cm3)是泡沫的基本特性之一.本文对形成泡沫的起泡剂浓度、增粘剂浓度、气体流量和温度等因素对H的影响及变化规律作了研究,并对H与泡沫表观粘度和泡沫半衰期的相互关系作了描述,对泡沫的实际应用具有一定的指导意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号