首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 889 毫秒
1.
Stem cell function is central for the maintenance of normal tissue homeostasis. Here we show that deletion of p38alpha mitogen-activated protein (MAP) kinase in adult mice results in increased proliferation and defective differentiation of lung stem and progenitor cells both in vivo and in vitro. We found that p38alpha positively regulates factors such as CCAAT/enhancer-binding protein that are required for lung cell differentiation. In addition, p38alpha controls self-renewal of the lung stem and progenitor cell population by inhibiting proliferation-inducing signals, most notably epidermal growth factor receptor. As a consequence, the inactivation of p38alpha leads to an immature and hyperproliferative lung epithelium that is highly sensitized to K-Ras(G12V)-induced tumorigenesis. Our results indicate that by coordinating proliferation and differentiation signals in lung stem and progenitor cells, p38alpha has a key role in the regulation of lung cell renewal and tumorigenesis.  相似文献   

2.
The activins (dimers of betaA or betaB subunits, encoded by the genes Inhba and Inhbb, respectively) are TGF-beta superfamily members that have roles in reproduction and development. Whereas mice homozygous for the Inhba-null allele demonstrate disruption of whisker, palate and tooth development, leading to neonatal lethality, homozygous Inhbb-null mice are viable, fertile and have eye defects. To determine if these phenotypes were due to spatiotemporal expression differences of the ligands or disruption of specific ligand-receptor interactions, we replaced the region of Inhba encoding the mature protein with Inhbb, creating the allele Inhbatm2Zuk (hereafter designated InhbaBK). Although the craniofacial phenotypes of the Inhba-null mutation were rescued by the InhbaBK allele, somatic, testicular, genital and hair growth were grossly affected and influenced by the dosage and bioactivity of the allele. Thus, functional compensation within the TGF-beta superfamily can occur if the replacement gene is expressed appropriately. The novel phenotypes in these mice further illustrate the usefulness of insertion strategies for defining protein function.  相似文献   

3.
4.
The mitogen-activated protein kinase (MAPK) p38alpha controls inflammatory responses and cell proliferation. Using mice carrying conditional Mapk14 (also known as p38alpha) alleles, we investigated its function in postnatal development and tumorigenesis. When we specifically deleted Mapk14 in the mouse embryo, fetuses developed to term but died shortly after birth, probably owing to lung dysfunction. Fetal hematopoietic cells and embryonic fibroblasts deficient in p38alpha showed increased proliferation resulting from sustained activation of the c-Jun N-terminal kinase (JNK)-c-Jun pathway. Notably, in chemical-induced liver cancer development, mice with liver-specific deletion of Mapk14 showed enhanced hepatocyte proliferation and tumor development that correlated with upregulation of the JNK-c-Jun pathway. Furthermore, inactivation of JNK or c-Jun suppressed the increased proliferation of Mapk14-deficient hepatocytes and tumor cells. These results demonstrate a new mechanism whereby p38alpha negatively regulates cell proliferation by antagonizing the JNK-c-Jun pathway in multiple cell types and in liver cancer development.  相似文献   

5.
Marfan syndrome is an autosomal dominant disorder of connective tissue caused by mutations in fibrillin-1 (encoded by FBN1 in humans and Fbn1 in mice), a matrix component of extracellular microfibrils. A distinct subgroup of individuals with Marfan syndrome have distal airspace enlargement, historically described as emphysema, which frequently results in spontaneous lung rupture (pneumothorax; refs. 1-3). To investigate the pathogenesis of genetically imposed emphysema, we analyzed the lung phenotype of mice deficient in fibrillin-1, an accepted model of Marfan syndrome. Lung abnormalities are evident in the immediate postnatal period and manifest as a developmental impairment of distal alveolar septation. Aged mice deficient in fibrillin-1 develop destructive emphysema consistent with the view that early developmental perturbations can predispose to late-onset, seemingly acquired phenotypes. We show that mice deficient in fibrillin-1 have marked dysregulation of transforming growth factor-beta (TGF-beta) activation and signaling, resulting in apoptosis in the developing lung. Perinatal antagonism of TGF-beta attenuates apoptosis and rescues alveolar septation in vivo. These data indicate that matrix sequestration of cytokines is crucial to their regulated activation and signaling and that perturbation of this function can contribute to the pathogenesis of disease.  相似文献   

6.
7.
Phosphoinositide 3-kinases produce 3'-phosphorylated phosphoinositides that act as second messengers to recruit other signalling proteins to the membrane. Pi3ks are activated by many extracellular stimuli and have been implicated in a variety of cellular responses. The Pi3k gene family is complex and the physiological roles of different classes and isoforms are not clear. The gene Pik3r1 encodes three proteins (p85 alpha, p55 alpha and p50 alpha) that serve as regulatory subunits of class IA Pi3ks (ref. 2). Mice lacking only the p85 alpha isoform are viable but display hypoglycaemia and increased insulin sensitivity correlating with upregulation of the p55 alpha and p50 alpha variants. Here we report that loss of all protein products of Pik3r1 results in perinatal lethality. We observed, among other abnormalities, extensive hepatocyte necrosis and chylous ascites. We also noted enlarged skeletal muscle fibres, brown fat necrosis and calcification of cardiac tissue. In liver and muscle, loss of the major regulatory isoform caused a great decrease in expression and activity of class IA Pi3k catalytic subunits; nevertheless, homozygous mice still displayed hypoglycaemia, lower insulin levels and increased glucose tolerance. Our findings reveal that p55 alpha and/or p50 alpha are required for survival, but not for development of hypoglycaemia, in mice lacking p85 alpha.  相似文献   

8.
The transforming growth factor-beta (TGF-beta) superfamily encompasses a large group of structurally related polypeptides that are capable of regulating cell growth and differentiation in a wide range of embryonic and adult tissues. Growth/differentiation factor-1 (Gdf-1, encoded by Gdf1) is a TGF-beta family member of unknown function that was originally isolated from an early mouse embryo cDNA library and is expressed specifically in the nervous systemin late-stage embryos and adult mice. Here we show that at early stages of mouse development, Gdfl is expressed initially throughout the embryo proper and then most prominently in the primitive node, ventral neural tube, and intermediate and lateral plate mesoderm. To examine its biological function, we generated a mouse line carrying a targeted mutation in Gdf1. Gdf1-/- mice exhibited a spectrum of defects related to left-right axis formation, including visceral situs inversus, right pulmonary isomerism and a range of cardiac anomalies. In most Gdf1-/- embryos, the expression of Ebaf (formerly lefty-1) in the left side of the floor plate and Leftb (formerly lefty-2), nodal and Pitx2 in the left lateral plate mesoderm was absent, suggesting that Gdf1 acts upstream of these genes either directly or indirectly to activate their expression. Our findings suggest that Gdf1 acts early in the pathway of gene activation that leads to the establishment of left-right asymmetry.  相似文献   

9.
Mouse embryos deficient in Gata3 die by 11 days post coitum (d.p.c.) from pathology of undetermined origin. We recently showed that Gata3-directed lacZ expression of a 625-kb Gata3 YAC transgene in mice mimics endogenous Gata3 expression, except in thymus and the sympathoadrenal system. As this transgene failed to overcome embryonic lethality (unpublished data and ref. 3) in Gata3-/- mice, we hypothesized that a neuroendocrine deficiency in the sympathetic nervous system (SNS) might cause embryonic lethality in these mutants. We find here that null mutation of Gata3 leads to reduced accumulation of Th (encoding tyrosine hydroxylase, Th) and Dbh (dopamine beta-hydroxylase, Dbh) mRNA, whereas several other SNS genes are unaffected. We show that Th and Dbh deficiencies lead to reduced noradrenaline in the SNS, and that noradrenaline deficiency is a proximal cause of death in mutants by feeding catechol intermediates to pregnant dams, thereby partially averting Gata3 mutation-induced lethality. These older, pharmacologically rescued mutants revealed abnormalities that previously could not be detected in untreated mutants. These late embryonic defects include renal hypoplasia and developmental defects in structures derived from cephalic neural crest cells. Thus we have shown that Gata3 has a role in the differentiation of multiple cell lineages during embryogenesis.  相似文献   

10.
Bone morphogenetic protein-3 is a negative regulator of bone density   总被引:13,自引:0,他引:13  
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta (TGF-beta) superfamily. Many BMPs are produced in bone and show osteogenic activity, suggesting that they may be determinants of bone mass. BMP3 was originally purified from bone as osteogenin, which induces osteogenic differentiation. Recombinant BMP3 (rhBMP3) has no biological activity, however, leaving its role in skeletal growth unclear. Here we show that BMP3 is an antagonist of osteogenic BMPs: BMP3 dorsalizes Xenopus laevis embryos, inhibits BMP2-mediated induction of Msx2 and blocks BMP2-mediated differentiation of osteoprogenitor cells into osteoblasts. These effects appear to be mediated through activin receptors. Finally, Bmp3(-/-) mice have twice as much trabecular bone as wild-type littermates, indicating that BMP3, the most abundant BMP in adult bone, is a negative determinant of bone density.  相似文献   

11.
Lumbar disc disease (LDD) is caused by degeneration of intervertebral discs of the lumbar spine. One of the most common musculoskeletal disorders, LDD has strong genetic determinants. Using a case-control association study, we identified a functional SNP (1184T --> C, resulting in the amino acid substitution I395T) in CILP, which encodes the cartilage intermediate layer protein, that acts as a modulator of LDD susceptibility. CILP was expressed abundantly in intervertebral discs, and its expression increased as disc degeneration progressed. CILP colocalized with TGF-beta1 in clustering chondrocytes and their territorial matrices in intervertebral discs. CILP inhibited TGF-beta1-mediated induction of cartilage matrix genes through direct interaction with TGF-beta1 and inhibition of TGF-beta1 signaling. The susceptibility-associated 1184C allele showed increased binding and inhibition of TGF-beta1. Therefore, we conclude that the extracellular matrix protein CILP regulates TGF-beta signaling and that this regulation has a crucial role in the etiology and pathogenesis of LDD. Our study also adds to the list of connective tissue diseases that are associated with TGF-beta.  相似文献   

12.
TGF-beta signaling in tumor suppression and cancer progression   总被引:44,自引:0,他引:44  
Epithelial and hematopoietic cells have a high turnover and their progenitor cells divide continuously, making them prime targets for genetic and epigenetic changes that lead to cell transformation and tumorigenesis. The consequent changes in cell behavior and responsiveness result not only from genetic alterations such as activation of oncogenes or inactivation of tumor suppressor genes, but also from altered production of, or responsiveness to, stimulatory or inhibitory growth and differentiation factors. Among these, transforming growth factor beta (TGF-beta) and its signaling effectors act as key determinants of carcinoma cell behavior. The autocrine and paracrine effects of TGF-beta on tumor cells and the tumor micro-environment exert both positive and negative influences on cancer development. Accordingly, the TGF-beta signaling pathway has been considered as both a tumor suppressor pathway and a promoter of tumor progression and invasion. Here we evaluate the role of TGF-beta in tumor development and attempt to reconcile the positive and negative effects of TGF-beta in carcinogenesis.  相似文献   

13.
Osteoarthritis is the most common form of human arthritis. We investigated the potential role of asporin, an extracellular matrix component expressed abundantly in the articular cartilage of individuals with osteoarthritis, in the pathogenesis of osteoarthritis. Here we report a significant association between a polymorphism in the aspartic acid (D) repeat of the gene encoding asporin (ASPN) and osteoarthritis. In two independent populations of individuals with knee osteoarthritis, the D14 allele of ASPN is over-represented relative to the common D13 allele, and its frequency increases with disease severity. The D14 allele is also over-represented in individuals with hip osteoarthritis. Asporin suppresses TGF-beta-mediated expression of the genes aggrecan (AGC1) and type II collagen (COL2A1) and reduced proteoglycan accumulation in an in vitro model of chondrogenesis. The effect on TGF-beta activity is allele-specific, with the D14 allele resulting in greater inhibition than other alleles. In vitro binding assays showed a direct interaction between asporin and TGF-beta. Taken together, these findings provide another functional link between extracellular matrix proteins, TGF-beta activity and disease, suggesting new therapeutic strategies for osteoarthritis.  相似文献   

14.
15.
16.
17.
The gene Ucp2 is a member of a family of genes found in animals and plants, encoding a protein homologous to the brown fat uncoupling protein Ucp1 (refs 1-3). As Ucp2 is widely expressed in mammalian tissues, uncouples respiration and resides within a region of genetic linkage to obesity, a role in energy dissipation has been proposed. We demonstrate here, however, that mice lacking Ucp2 following targeted gene disruption are not obese and have a normal response to cold exposure or high-fat diet. Expression of Ucp2 is robust in spleen, lung and isolated macrophages, suggesting a role for Ucp2 in immunity or inflammatory responsiveness. We investigated the response to infection with Toxoplasma gondii in Ucp2-/- mice, and found that they are completely resistant to infection, in contrast with the lethality observed in wild-type littermates. Parasitic cysts and inflammation sites in brain were significantly reduced in Ucp2-/- mice (63% decrease, P<0.04). Macrophages from Ucp2-/- mice generated more reactive oxygen species than wild-type mice (80% increase, P<0.001) in response to T. gondii, and had a fivefold greater toxoplasmacidal activity in vitro compared with wild-type mice (P<0.001 ), which was absent in the presence of a quencher of reactive oxygen species (ROS). Our results indicate a role for Ucp2 in the limitation of ROS and macrophage-mediated immunity.  相似文献   

18.
Autosomal dominant polycystic liver disease results from mutations in PRKCSH or SEC63. The respective gene products, glucosidase IIβ and SEC63p, function in protein translocation and quality control pathways in the endoplasmic reticulum. Here we show that glucosidase IIβ and Sec63p are required in mice for adequate expression of a functional complex of the polycystic kidney disease gene products, polycystin-1 and polycystin-2. We find that polycystin-1 is the rate-limiting component of this complex and that there is a dose-response relationship between cystic dilation and levels of functional polycystin-1 following mutation of Prkcsh or Sec63. Reduced expression of polycystin-1 also serves to sensitize the kidney to cyst formation resulting from mutations in Pkhd1, the recessive polycystic kidney disease gene. Finally, we show that proteasome inhibition increases steady-state levels of polycystin-1 in cells lacking glucosidase IIβ and that treatment with a proteasome inhibitor reduces cystic disease in orthologous gene models of human autosomal dominant polycystic liver disease.  相似文献   

19.
Bronchial asthma is a common inflammatory disease caused by the interaction of genetic and environmental factors. Through a genome-wide association study and a replication study consisting of a total of 7,171 individuals with adult asthma (cases) and 27,912 controls in the Japanese population, we identified five loci associated with susceptibility to adult asthma. In addition to the major histocompatibility complex and TSLP-WDR36 loci previously reported, we identified three additional loci: a USP38-GAB1 locus on chromosome 4q31 (combined P = 1.87 × 10(-12)), a locus on chromosome 10p14 (P = 1.79 × 10(-15)) and a gene-rich region on chromosome 12q13 (P = 2.33 × 10(-13)). We observed the most significant association with adult asthma at rs404860 in the major histocompatiblity complex region (P = 4.07 × 10(-23)), which is close to rs2070600, a SNP previously reported for association with FEV(1)/FVC in genome-wide association studies for lung function. Our findings offer a better understanding of the genetic contribution to asthma susceptibility.  相似文献   

20.
Although insights have emerged regarding genes controlling the early stages of eye formation, little is known about lens-fibre differentiation and elongation. The expression pattern of the Prox1 homeobox gene suggests it has a role in a variety of embryonic tissues, including lens. To analyse the requirement for Prox1 during mammalian development, we inactivated the locus in mice. Homozygous Prox1-null mice die at mid-gestation from multiple developmental defects; here we describe the specific effect on lens development. Prox1 inactivation causes abnormal cellular proliferation, downregulated expression of the cell-cycle inhibitors Cdkn1b (also known as p27KIP1) and Cdkn1c (also known as p57KIP2), misexpression of E-cadherin and inappropriate apoptosis. Consequently, mutant lens cells fail to polarize and elongate properly, resulting in a hollow lens. Our data provide evidence that the progression of terminal fibre differentiation and elongation is dependent on Prox1 activity during lens development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号