首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了减少基于端到端时延的拓扑推断算法中产生的测量流量,根据网络中端到端时延的特点,提出了一种测量聚类算法和两阶段拓扑推断算法.测量聚类算法在测量时首先粗略测量网络节点的端到端时延,根据时延对节点进行聚类,然后根据节点的聚类测量节点对的端到端时延并计算节点相关性,最后通过两阶段拓扑推断算法推断网络拓扑结构.理论证明了测量聚类算法能够有效减少测量产生的测量流量并通过NS2进行了仿真,仿真结果表明测量聚类算法和两阶段拓扑推断算法在有效减少测量流量的情况下能够正确地推断网络的拓扑结构.  相似文献   

2.
基于自定义类,利用V isua l C 语言,给出自定义按钮控件类和自定义移动对象类的打印方法,这两种方法可精确地确定打印位置,获得较好的打印效果。  相似文献   

3.
水稻剑叶蛋白质的双向电泳分析   总被引:4,自引:0,他引:4  
以三系杂交稻不育系武金4A,保持系武金4B剑叶为材料,利用双向电泳技术,获得了孕穗期剑叶蛋白质双向电泳图谱。经考马斯亮兰染色,可辨别出蛋白质斑点数450个左右;经银染复染后,可辨别出约800个左右蛋白质点。蛋白质相对分子量约在14.0kDa~94.0kDa范围内,主要分布在14.0kDa~67.0kDa之间;等电点(pIs)约在3.5~9.5范围内,主要分布在5.0~7.0之间。  相似文献   

4.
首先介绍单视角谱聚类算法的原理,在此基础上,研究谱聚类在多个视角框架下的应用,同时也研究了多视角谱聚类算法在大数据中的应用,最后对多视角谱聚类算法研究方向进行总结.  相似文献   

5.
基于山峰聚类的聚类上限确定方法   总被引:1,自引:0,他引:1  
文章提出了一种基于山峰聚类的聚类上限检测方法,依靠山峰聚类确定聚类数目的上限,仿真试验表明,这种方法能将聚类上限确定在一个合理的范围之内,从而加快聚类的效率.  相似文献   

6.
基于随机抽样和聚类特征的聚类算法   总被引:5,自引:0,他引:5  
在分析BIRCH算法不足的基础上,提出了一种基于随机抽样和聚类特征的聚类算法(CLAP),该算法采用随机抽样技术,从数据库中抽取一部分数据进行聚类的预处理过程,这样大大降低了运行时间,CLAP通过设立索引树的叶节点的直径和聚类直径,提高了聚类的精度,并采用全局搜索和局部搜索相结合的方式,消除了输入顺序对聚类质量的影响.测试结果表明,CLAP算法不仅提高了聚类速度,而且改善了聚类质量。  相似文献   

7.
聚类分析是重要的数据挖掘方法,在商务智能、地理信息系统、医学等方面有广泛的应用.随着聚类分析的蓬勃发展,涌现出了许多聚类算法,其中最重要的算法之一是基于密度的空间聚类以及其多种变种——基于密度连通链、基于加权密度、基于引力连通集合的算法.这些算法在概念上相似但没有统一的描述.本文针对基于密度的空间聚类及其变种提出了拓扑的概念.给出了聚类拓扑结构的定义,把簇定义为拓扑连通集合.此外,本文运用全新的拓扑思想改进典型的算法,提出了一种拓扑聚类的新算法.实例证明此算法有效.  相似文献   

8.
在模糊C-均值聚类(FCM)目标函数的基础上按聚类中心分离原则增加一个聚类中心分离项来扩展FCM算法,提出基于聚类中心分离的模糊聚类模型(FCM_CCS)。该模型可使聚类过程中的聚类中心之间距离扩大,从而得到更好的聚类效果。由于该模型和FCM一样对噪声敏感我们提出它的可能性聚类模型(PCM_CCS),最后进一步扩展成它的可能性模糊聚类模型(PFCM_CCS)。基于聚类中心分离的可能性模糊聚类模型在处理噪声数据和克服一致性聚类问题方面表现出良好的性能。对数据集的测试实验结果表明了提出的PFCM_CCS能同时产生模糊隶属度和典型值,使聚类中心间距扩大,同时具有更好的聚类准确率。  相似文献   

9.
改进的基于层次聚类的模糊聚类算法   总被引:1,自引:1,他引:0  
针对FCM算法的缺陷,文章提出了一种基于层次聚类的模糊聚类算法(HFCM)。该算法采用凝聚的层次聚类方法,可快速地发现高度聚集的数据区域,并对这些高密度区域进一步进行分析与合并,通过评估函数的评估,找到最优的聚类方案。试验结果表明,该算法具有较高的分类精确度和较高的排除噪声的能力。  相似文献   

10.
聚类集成是聚类分析中的一个重要技术手段,能有效地提高聚类结果的准确性、鲁棒性和稳定性。利用现有的聚类准则提出了一个新的评价指标,用于基聚类结果的有效性评估,并把评估值作为基聚类结果的权重来进行加权聚类集成。在UCI真实数据集上对提出的基于聚类准则融合的加权聚类集成算法进行了测试,实验表明新提出的算法比已有的集成聚类算法具有更高的准确率和回收率,可以得到更好的集成聚类结果。  相似文献   

11.
基于K -均值聚类的混合聚类算法   总被引:1,自引:0,他引:1  
K-均值聚类算法是聚类算法中比较典型的算法之一,在其各类改进算法中都受到了离群点、初质心、类个数等因素的干扰。本文利用相似密度提出一种新的聚类初始质心选取和离群点判别方法,对K-均值聚类算法进行了改进。通过实验证明改进算法提高了聚类的有效性和稳定性。  相似文献   

12.
孟岩  刘希玉  李镇 《山东科学》2007,20(5):48-52
针对模糊C-均值本文提出将基于蚁群算法的模糊聚类算法应用于文本聚类中,聚类采用二级结构,蚁群算法(ACA)作为一级结构,模糊C-均值聚类FCM用于二级结构。将此算法对文本集合进行聚类实验,并用分离系数、分离熵来判断模糊划分的效果,实验结果表明,与FCM相比,该算法具有较好的聚类效果。  相似文献   

13.
基于模糊c均值聚类的多模型软测量建模   总被引:25,自引:2,他引:25  
根据几个模型相加可提高模型的预测精度及鲁棒性的思想,提出了一种非线性软测量建模的新方法。即先用模糊c均值聚类将训练集分成具有不同聚类中心的子集,每一子集用RBF网络或部分最小二乘法进行训练得出子模型,再用模糊聚类后产生的隶属度将各子模型的输出加权求和得到最后结果,此算法通过一个复杂非线性函数的仿真建模和一个分馏塔柴油倾点软测量建模的工业实例研究,结果表明比其它算法具有更好的泛化结果和预报精度,具有  相似文献   

14.
文档聚类和词聚类都是重要且被充分研究的问题.大多数现有的聚类算法针对文档和词是分别聚类,不是同时的.本文提出文档集作为文档和词间的一个二部图的模型思想,使用这个思想,联合聚类问题可以被看成二部图的分割问题.为了解决图的分割问题,使用一个新的联合谱聚类算法,即使用适度规模的词-文档矩阵的奇异向量产生好的分割结果.谱算法得到一些最佳的性能,表明奇异向量通过连续放松解决图划分的NP难问题.最后通过实验结果验证联合聚类算法在实践中非常有效.  相似文献   

15.
在旱作条件下对3个不同基因型水稻开花后8~40d剑叶叶绿素含量、可溶性糖含量、脯氨酸含量、MDA含量、SOD活性、POD活性等生理指标进行了测定分析。结果表明:不同基因型水稻开花后8~40d剑叶SOD活性和可溶性糖含量都呈明显下降趋势,脯氨酸含量和MDA含量则呈明显上升趋势;品种52-7剑叶SOD活性和脯氨酸含量始终保持较高水平,较适宜旱作。相关分析表明,SOD活性与MDA含量存在极显著线性负相关,SOD活性与可溶性糖含量存在极显著线性正相关;MDA含量与叶绿素含量、可溶性糖含量存在显著线性负相关,脯氨酸含量与可溶性糖含量存在极显著线性负相关。  相似文献   

16.
Gustafson-Kessel(GK)聚类算法可以有效地搜索超椭球、平面和线型的数据类,但仍然存在对初始聚类中心较敏感、易于陷入局部最优的缺陷.为此,文中根据鱼群觅食与聚类的相似性,利用人工鱼群(AFS)算法对聚类中心进行初始化,提出了改进的G-K聚类算法,并利用人工数据集和IRIS数据集进行仿真研究.结果表明,文中算法能有效地发现数据集中的聚类结构,聚类效果优于GK聚类算法.  相似文献   

17.
提出一种基于C-均值聚类的二层次人像聚类算法,解决了传统硬聚类中由于每个数据只能属于某一类而使得处于类边界的数据在检索时结果准确度不高, 以及对高维大数据量数据分类时存在的模糊聚类时间和空间复杂性过大等问题. 该算法为大规模人像数据库检索提供了一种可行的分类方法, 使得分类后的人像数据在有效提高检索速度的同时保证了检索的准确度.  相似文献   

18.
针对文本分类和信息检索中的信息冗余和计算复杂等问题,在概念层次网络的基础上,提出了反义词、同义词、近义词的聚类算法.算法的基本思想是将词语的语义映射到HNC概念符号体系上,将所有的词语都变成一系列符号串,并在计算语义相似度和语义距离的基础上,在词语的HNC符号语料库上实现同义、近义、反义的聚类.  相似文献   

19.
针对文本分类和信息检索中的信息冗余和计算复杂等问题,在概念层次网络的基础上,提出了反义词、同义词、近义词的聚类算法.算法的基本思想是将词语的语义映射到HNC概念符号体系上,将所有的词语都变成一系列符号串,并在计算语义相似度和语义距离的基础上,在词语的HNC符号语料库上实现同义、近义、反义的聚类.  相似文献   

20.
为确保安全生产,工厂需要在巡检人数与巡检线路安排上进行优化配置。通过TSP问题的求解得出巡检人数,再用聚类的方法进行任务分配,求解出每个工人的巡检线路与工作量。该方法不仅能保证所有巡检点能按要求完成巡检,也实现了每个工人工作量的均衡分配。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号