共查询到20条相似文献,搜索用时 15 毫秒
1.
近年来,大多数火灾自动报警系统都是通过检测感温、感烟和感光等传感器的方法进行检测,只能针对单一特征信息进行判断识别,受到外界空间、环境或人为因素的影响.卷积神经网络(CNN)以其高准确率的识别率在广泛应用成为一个活跃的研究课题.然而如何可靠、有效地解决火焰检测问题仍然是实践中一个具有挑战性的问题.本文提出了一种新的基于... 相似文献
2.
针对行人检测算法未能充分利用行人的特征信息,导致对行人的检测效果不佳问题,本文对无锚框的行人检测网络模型CSP进行了相应改进,提出了一种基于卷积神经网络的行人检测算法.首先,将原主干网络由ResNet-50加深为ResNet-101,然后引入卷积块注意力模块(CBAM)来提高原网络对小尺度行人中心点的特征表达,加入基于... 相似文献
3.
针对传统布料疵点检测准确率低、识别较慢且计算量大问题,提出基于卷积神经网络的布料疵点检测方法,实现增强布料疵点检测鲁棒性、高效性的设计目标。为保证训练结果准确,首先采集数量以千万级为单位的布料图像并进行图像预处理,标记无疵点布料和疵点布料;然后将图像送入设计的卷积神经网络进行训练和测试,获取疵点检测框;紧接着采用改进的NMS分类算法对检测框进行多框合并,减少误检,进一步提高模型检测效果;最后利用设计的特征图分割算法使网络模型脱离GPU显存限制,适用于各种性能计算机。实验结果表明该方法可在实现布料检测高速度、高准确率的同时增强检测方法的鲁棒性。实际检测速度为3fps,准确率可达99.6%,超过现有疵点检测算法,表明该检测方法可应用于对布料要求更高的生产企业。 相似文献
4.
为了提高视频中行人检测的准确度,提出了一种基于递归卷积神经网络的行人检测方法.该方法利用递归卷积神经网络融合视频中连续图像的上下文信息,以实现准确的行人检测.首先,利用卷积神经网络提取连续图像的多个特征图组;然后,根据先后次序,将多个特征图输入到递归卷积神经网络中,形成一张关于行人位置的掩码图;最后,通过在掩码图上预测... 相似文献
5.
《浙江科技学院学报》2021,33(1)
汽车控制器局域网(controller area network, CAN)由于缺乏安全保护机制,容易受到外部恶意网络攻击。针对该问题,通过分析拒绝服务(denial of service, DoS)攻击数据集和模糊(fuzzy)攻击数据集,提出一种基于卷积神经网络(convolutional neural networks, CNN)的CAN总线网络入侵检测算法。本算法利用CAN总线正常状态下与受攻击状态下帧的标识符(identifier, ID)序列之间稳定性差异,首先将CAN ID序列通过格拉姆和角场(gramian angular summation field, GASF)转换为图片,然后采用简化的VGG(visual geometry group,视觉几何团队)网络对这些图片进行特征提取并分类,对含有入侵行为的帧序列进行检测。试验结果显示,本研究提出的CAN入侵检测方法在拒绝服务攻击数据集上的精准率为100%,在模糊攻击数据集上的精准率为99.90%,表明本方法具有很好的检测性能,能够满足实际工程的需求。本研究可为网联车辆的网络安全防护提供参考。 相似文献
6.
针对已提出的很多烟雾检测方法中都是基于手工制作的特征或者使用原始图片直接作为神经网络的输入,减少了深度学习的鲁棒性。为解决这些问题,提出一种基于卷积神经网络(convolutional neural network,CNN)的烟雾检测方法。使用图片归一化方式消除光照的影响,利用烟雾颜色检测烟雾候选区域,CNN自动提取烟雾候选区域的特征,进行烟雾识别,根据分类结果得到报警信号。针对烟雾产生初期烟雾区域相对较小的问题,利用扩大候选区域的策略提高烟雾检测的及时性。由于训练数据少或不平衡引起的过度拟合,使用数据增强技术从原始数据集生成更多训练样本解决该问题。实验结果表明,该方法能有效地检测烟雾,且具有更高的准确率和更好的鲁棒性。 相似文献
7.
8.
将小波神经网络引入基于结构光投影的复杂物体三维面形测量.在测量过程中,利用小波函数的时频特性及变焦特性和神经网络强大的函数逼近功能,得到离散条纹图的连续逼近函数,从中解出物体的相位信息,获得物体的三维面形分布.应用小波神经网络,在结构光投影条件下,只需要获取一幅条纹图,便可以完成复杂物体的三维面形测量.该方法相比传统的傅里叶变换轮廓术方法,不存在滤波操作,具有更高的灵敏度,在条纹图存在阴影的情况下,能更准确获得物体的相位信息,更加适用于恢复复杂物体的三维面形.模拟及实验均验证了该方法的可行性. 相似文献
9.
《杭州师范大学学报(自然科学版)》2020,(1)
单幅图像的目标检测和物体姿态估计一直是计算机视觉领域中非常重要的研究内容.利用卷积神经网络对单幅室内场景图像进行研究分析,提出了一种基于卷积神经网络的单幅图像室内物体姿态估计算法.该算法采用直接分类预测的方法来实现物体的姿态估计.通过改进Faster-RCNN网络结构,利用室内场景数据集SUNRGB-D训练网络,实现端到端单幅室内图像目标检测和姿态估计.实验结果表明,该算法目标检测平均准确度为70%,姿态估计结果中平移估计准确度为28%,旋转角度估计准确度为30%. 相似文献
10.
卷积神经网络算法已广泛运用在图像识别的领域中,基于深度学习的森林火灾检测也逐渐兴起,传统的卷积神经网络算法存在计算速度慢、噪声影响大、传统全连接权重多等问题.本文将使用更好的优化器来提高计算速度,并通过调整模型权重的方式来获得更好的识别效果. 相似文献
11.
随着智能手机的广泛使用,手机APP软件数量也日益剧增,产生了很多恶意APP软件,恶意APP软件可能会窃取手机里隐私信息,因此,检测恶意APP已成为一项重要的安全问题;其中Android系统市场占有率很高,恶意APP软件也数不胜数,因此,Android恶意软件的检测成为了研究的重点.鉴于很多APP都具备反编译功能,我们直... 相似文献
12.
为了进一步提高三维模型的识别精度,提出了一种基于深度卷积神经网络的三维模型识别方法。将点云数据通过占用网格规范化计算转化为二值3D体素矩阵,通过附加正则化项的随机梯度下降算法提取体素矩阵的特征,再通过共享权重的旋转增强对训练集进行数据增广并以此对模型标签进行预测。实验结果表明,该算法在公开数据集ModelNet40及悉尼城市模型数据集上的识别精度均达到85%左右。与基于同类机器学习的三维模型识别算法相比,在相同训练数据集上该方法网络训练时间短,在相同测试数据集上模型识别准确率高,检索速度快。提出的体素占用网格模型的深度卷积神经网络,可以实现三维点云模型数据集及规范化体素模型数据集的识别和分类工作。 相似文献
13.
为了提高遥感目标检测的稳健性和准确性,基于低层特征检测器,增加了1个改进型卷积神经网络(CNN)框架。首先,利用支持向量回归(SVR)对遥感目标进行初步分类,将检测出的目标信息作为CNN框架的输入。然后,对CNN框架进行优化,通过模块扩展的方式纳入更深的模块。为了使得分类器对亮度变化具有更好的稳健性,在特征向量分类之前增加正则化层(RL)。同时,为了提升目标检测的准确性,增加1个欧拉变换层(ETL),作为类别间的分离度量。使用来自CIFAR-10和MNIST数据集中的图像,与定向梯度边缘直方图(E-HOG)方法、基于生成式对抗网络(GAN)的检测方法、基于二值与浮点数混用方法的语义分割网络(MBU-Net)相比较,仿真结果表明:该文方法的精度和F1得分更高,且标准偏差也更低;该文方法的运行时间接近于一般CNN方法;利用该文方法在测试集的卫星图像中进行目标建筑物检测,模块化CNN可以与基于特征的算法实现互补。 相似文献
14.
针对牲畜面部识别在养殖行业广泛需求的问题, 提出一种基于卷积神经网络的猪脸特征点检测方法, 解决了猪脸特征点难检测的问题. 首先, 采集猪面部数据并进行特征点标注, 使用新的采集方法以解决猪口部通常不可见的问题; 其次, 对猪脸数据和人脸数据进行结构计算, 匹配相似度较高的猪脸和人脸, 构建猪脸人脸匹配数据集; 再次, 利用匹配数据集训练TPS(thin plate spline)形变卷积神经网络, 得到形变后的猪脸数据集以适配人脸特征点检测模型; 最后, 使用形变猪脸数据集对人脸特征点检测神经网络模型进行微调, 得到猪脸特征点检测模型. 实验结果表明, 用该方法进行猪脸特征点检测, 错误率仅为5.60%. 相似文献
15.
针对毛巾织物瑕疵检测中存在的小目标瑕疵漏检率高、形变尺度大的瑕疵检测精度低以及模型检测效率不理想等问题,提出一种基于YOLOv4网络的轻量化毛巾织物瑕疵检测方法。采用轻量级网络Ghost Net重构主干特征提取网络,以降低模型运算量,提升检测速度;在深层特征提取网络中引入结合空洞卷积和SoftP ool的DS-CBAM模块,扩大感受野的同时保证特征图分辨率并提高模型对毛巾织物瑕疵特征的提取能力;根据各类毛巾织物瑕疵正负样本不平衡的数据特点,引入难易样本聚焦参数和正负样本平衡参数对损失函数进行优化,降低样本失衡对检测性能的影响;采用改进度量距离的K-means算法自适应生成适合毛巾织物瑕疵尺寸的先验框,提高先验框和毛巾织物瑕疵目标的匹配度。研究结果表明:改进后的模型在毛巾织物瑕疵数据集上的检测精度要优于原YOLOv4和其他主流检测算法,综合类别平均精度达到92.14%,检测速度达到49.98帧/s,分别比原模型提高了5.31%、22.83%,有效平衡了检测精度和检测速度之间的关系。 相似文献
16.
针对Web应用程序的攻击一直是网络空间对抗的热点问题,随着Web攻击技术的不断发展,传统的入侵检测系统和Web应用防火墙越来越无法满足安全防护需求。针对攻击者在Web请求中嵌入可执行代码或注入恶意代码来构造各种Web攻击,本文设计一种基于特征融合的恶意Web请求检测卷积门控循环单元(CGRU)神经网络。该网络利用CNN捕捉网络事件的局部特征和高阶特征,摒弃了传统的池化方法,采用GRU代替原有的池化层在时间维度上进行特征采集。同时,为了提高检测性能,筛选传统机器学习中在Web攻击检测领域分类效果较好的9个统计特征来增强原始特征。此外,还使用Word2Vec模型对词嵌入矩阵进行预训练,获得CGRU模型的输入,并对最终结果进行分类,有效提高多分类精度。在公开的HTTP CSIC 2010数据集上与当前典型方法进行对比实验,结果表明:本文所提方法的准确率为99.81%,召回率为99.78%,F1值为98.80%,精准率为99.81%,较当前典型方法均有提高。 相似文献
17.
针对结构健康监测系统产生的海量数据难以高效分析的问题,采用了一种基于二维卷积神经网络的损伤识别检测方法,该方法直接将结构在外界激励作用下的加速度时程数据作为输入信息,通过卷积神经网络自动提取加速度数据中的隐含特征,识别结构的损伤.以板的损伤识别为例,给出了卷积神经网络损伤识别模型的输入数据格式、网络结构和训练方法,分析了卷积神经网络分别在不含噪声,含噪声5%、10%以及混合噪声情况下的损伤识别能力.测试结果显示这种基于加速度输入的卷积神经网络具有较高的损伤识别精度和抗噪能力,从而为结构健康监测系统数据分析和损伤识别提供了一种新的途径. 相似文献
18.
作为深度学习的一种有效算法,深度卷积网络已成功应用在处理图像、视频和音频等领域.通过建立一卷积神经网络模型并应用于网络入侵检测,选取的卷积核与数据进行卷积操作提取特征的局部相关性从而提高特征提取的准确度.采集到的网络数据通过多层"卷积层-下采样层"的处理对网络中正常行为和异常行为的特征进行深度刻画,最后通过多层感知机进行正确分类.KDD 99数据集上的实验表明,文中提出的卷积神经网络模型与经典BP神经网络、SVM算法等相比,有效提高了入侵检测识别的分类准确性. 相似文献
19.
提出了一种基于卷积神经网络(CNN)的人眼检测及眼睛睁闭状态分类的方法.首先,训练1个用于检测人眼中心点的卷积神经网络,当输入人脸图像时,网络能快速检测到双眼中心点,并输出中心点对应的坐标值;根据中心点坐标值可以确定眼睛区域,得到人眼图像;然后将人眼图像输入到1个用于判断眼睛睁闭状态的分类网络,得到眼睛的睁闭状态.试验结果表明:本文提出的方法有效可行,眼睛定位的准确率可达96%,状态分类准确率可达97.07%.相比传统方法,该方法具有较好的鲁棒性和应用前景. 相似文献
20.
《西北大学学报(自然科学版)》2017,(4):505-512
为解决酿酒葡萄生长状态的在线自动监测问题,该文提出了一种基于卷积神经网络的葡萄叶片检测算法。通过多层卷积的方式产生特征图,使原图像的特征增强并且降低了图像噪声,在最后一层特征图中,通过使用RPN(Region proposal network)生成建议区域,然后进行池化操作,最后进行边框回归与分类。该算法在有叶片遮挡、光照阴影、病害叶片等复杂背景因素下对葡萄叶片有良好的检测效果。试验表明,该算法在复杂背景下对葡萄叶片的检测率为87.2%,误检率为7.2%。 相似文献