首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
20钢表面双辉渗镀TiC陶瓷   总被引:1,自引:0,他引:1  
设计了一种独特的源极结构,运用双层辉光渗金属技术在20钢表面实现了Ti,C二元同时共渗并获得表面渗镀层.对渗镀层进行了微观组织、形貌、成分、物相和硬度的检测与分析.分析结果表明:渗镀层厚约21μm,表面呈颗粒状分布,主要由TiC陶瓷相构成,其结构致密,与基体结合良好,结合力为42N;源极钛靶与工件的极间距对渗镀层厚度及表面硬度值的影响较大,极间距在12~16mm时渗镀效果佳,该条件下所形成的渗镀层表面硬度较基体提高了10倍以上.  相似文献   

2.
为了提高DLC膜与P20塑料模具钢基体间的结合强度,采用高功率大电流脉冲电源,实现P20钢氮化及氮化/DLC连续双重处理。采用SEM、XRD和显微硬度仪对其表面结构、相组成及显微硬度进行测试分析,结果表明:氮化处理增大试样表面粗糙度,氮化层由γ'-Fe4N相和ε-Fe(2,3) N相组成,硬度由240HV0.05上升到830HV0.05;压痕法结合力测试和摩擦磨损实验结果表明,氮化处理提高DLC膜基结合力和摩擦磨损性能。  相似文献   

3.
离子轰击处理的TC11钛合金表面组织与性能   总被引:5,自引:0,他引:5  
为提高表面性能 ,对 TC11钛合金进行了离子轰击表面处理 ,运用金相显微镜、扫描电镜和 X射线衍射仪分析了表面改性层的组织结构 ,测定了改性层的显微硬度和深度。结果表明 :TC11钛合金经离子轰击表面处理后 ,表面可获得由 Ti N和 Ti2 N组成的改性层 ,硬度为 60 0~ 80 0HV0 .0 2 ;次表层主要由含氮α相组成 ,渗层厚度为 3 5 0~ 4 0 0μm。表面硬度的提高 ,有利于改善 TC11钛合金的耐磨性  相似文献   

4.
采用双层辉光离子渗金属技术在T8钢表面进行了W-Mo-Co多元共渗,研究了表面合金层的组织、相组成、成分、硬度、脆性以及与基体的结合强度。结果表明,合金层由M6C MC型碳化物层和W、Mo、Co固溶体扩散层组成。碳化物层硬度很高,渗金属态HV0.025硬度高达1 200~1 400,固溶、时效处理后硬度升高至1 400~1 600左右;固溶体扩散层在渗金属态硬度较低,HV0.025硬度只有400~550,固溶、时效处理后硬度升高至800~1 000。碳化物层与基体之间为冶金结合,不存在膜基结合问题。  相似文献   

5.
为提高套管钢的耐腐蚀性能,在950℃对N80套管钢分别进行了2 h、4 h及6 h的包埋渗铝工艺处理.不同包埋时间下所得渗层的物相组成、微观形貌、显微硬度和电化学性能不同.测试结果表明:渗铝时间为2 h时,所得渗铝层厚度为150μm,渗铝时间延长到4 h和6 h后,渗铝层厚度增大到300μm;渗铝时间为2 h、4 h时所得N80套管钢的渗铝层主要由FeAl金属间化合物组成,当渗铝时间为6 h时,渗铝层中开始出现了高铝Fe2Al5相;不同时间包埋渗铝处理后的N80套管钢试样表面硬度高于基体,自腐蚀电流密度显著下降.由此得出结论:高铝相铁铝化合物随包埋时间的延长开始出现;渗铝层厚度随包埋时间的延长有所增加,当包埋时间超过4 h后,包埋时间对渗铝层致密度的提高作用较厚度增加更为显著;延长包埋时间可以显著提高渗铝层的硬度,但过长的包埋时间会同时造成基体硬度严重地下降;包埋时间对腐蚀性能的影响作用不明显.  相似文献   

6.
为了提高低碳钢的耐磨性,成功地采用等离子体电解碳氮共渗技术在不同电压下对低碳钢进行表面处理。使用往复式摩擦磨损测试仪分析改性表面的摩擦磨损性能;扫描电子显微镜(scanning electron microscope, SEM)和能谱仪(energy dispersive spectroscopy, EDS)分析渗透层的表面、截面形态和组成;使用3D共聚焦显微镜分析渗透层的磨痕;使用X射线衍射(X-ray diffraction, XRD)研究渗透层的相组成。结果表明,共渗层的厚度和显微硬度均随着施加电压的增加呈现先升高后降低的趋势,在电压为350 V时,共渗层厚度最厚,硬度最大,分别为130.24μm和846.7 HV,此时共渗层的摩擦系数最小,约为0.65,磨痕轮廓深度仅为14.79μm。液相等离子体电解渗技术在共渗层形成的铁碳化合物和铁氮化合物是其耐磨的主要原因。  相似文献   

7.
为提高铁基金属在熔融锌中的耐蚀性能,通过固体粉末法在Q235钢表面进行渗硅、渗钼和硅钼共渗,并对渗层的形貌、致密度、显微硬度、组分及物相结构进行了分析,进一步将合金于470℃的熔融锌液中浸泡26h,并测定其腐蚀速率。结果表明,渗层中形成了良好耐蚀性的金属间化合物(Fe_3Si,Fe_3Mo,MoSi_2和Mo_5Si_3),Mo元素的加入可促进渗剂中Si元素的渗入,从而提高渗层的致密度,比较结果显示硅钼共渗层更加致密,尤其是m(Si)∶m(Mo)=2∶1时,与基体相比,试样的腐蚀速率下降了近2个数量级,表现出较好的耐蚀性;但由于渗层中孔洞等缺陷的存在,导致其致密度降低,耐锌液腐蚀性能也受到影响。因此在未来的研究中,应注重固体渗层致密性的改善,以进一步提高渗层的耐腐蚀性能。  相似文献   

8.
对38CrMoAl钢进行460℃氮碳共渗(0.1 L/min氨气+0.025 L/min乙醇)后氧化(0.015 L/min氨气+0.15L/min空气)改性层的制备及表征。4,8,12 h后的共渗层增重分别是0.88,0.97,1.29 mg/cm~2;与未表面处理试样相比增重明显。4,8,12 h共渗层的表面硬度分别为1362,1283,1289 HV_(0.05),共渗层截面的硬度从表面缓慢下降到基体(≈381.3 HV_(0.05))。4,8,12 h后改性层的厚度分别为140.1,150.2,200.4μm。氮碳共渗后氧化层包括Fe_3O_4和ε-Fe_(2-3)N,Fe_3O_4为主要相,ε-Fe_(2-3)N为次要相。38CrMoAl钢460℃氨气氮碳共渗后氧化8 h后,表面层中Fe_3O_4的比例相对较大,耐蚀性提高。  相似文献   

9.
运用双辉技术在20钢表面进行Ti、C、N三元共渗,研究如何控制通氮保温时间来获得不同组织结构的n(CN)渗镀层。结果表明:随通氮保温时间的增加,渗镀层表面的颜色由紫罗兰色逐渐变成金黄色,其厚度也迅速增加,可超过20μm;渗镀层内物相的构成也随之变化,保温0.5h渗镀层内无Ti(CN)形成,保温时间超过2h时,有Ti(CN)生成,且随保温时间的增长,其结构由TiCα7Nα3变成TiCα2Nα8;同时渗镀层与基体的结合力逐渐变大,最高可达70N左右。  相似文献   

10.
运用双辉技术在20钢表面进行Ti、C、N三元共渗,研究如何控制通氮保温时间来获得不同组织结构的Ti(CN)渗镀层.结果表明:随通氮保温时间的增加,渗镀层表面的颜色由紫罗兰色逐渐变成金黄色,其厚度也迅速增加,可超过20μm;渗镀层内物相的构成也随之变化,保温0.5h渗镀层内无Ti(CN)形成,保温时间超过2h时,有Ti(CN)生成,且随保温时间的增长,其结构由TiC0.7N0.3变成TiC0.2N0.8;同时渗镀层与基体的结合力逐渐变大,最高可达70N左右.  相似文献   

11.
研究了Ti 46.5Al 2.5V 1.0Cr合金的辉光离子渗氮,气氛为NH3。当采用900℃×9h工艺参数时,渗层硬度值可达1097HV,与基体相比,耐磨性提高2.5倍,渗层深度可达10μm以上,与高温气体渗氮相比,渗氮时间缩短至1/5,渗层深度增加到2.5倍。  相似文献   

12.
对1Cr13马氏体不锈钢在不同气体氛围下进行低温离子渗氮处理,研究了不同渗氮气体比例对渗层组织和性能的影响。结果表明:在氨气与氩气气体比例为8∶1时,1Cr13不锈钢低温离子渗氮后得到的渗层的组织与性能最好,此时表面硬度为1 100 HV1,为基体硬度的4倍,且具有良好的梯度硬度,渗层厚度为85.7μm。当氨气与氩气的气体比例从4∶1提高到8∶1时,渗氮层硬度与厚度均提高,而气体比例为12∶1与16∶1时,渗层厚度基本不变,但是不锈钢表面形成的黑色物质使渗氮层表面硬度与渗层硬度出现不均匀性,当气体比例为16∶1时,中心硬度降低到625.0 HV1,与边缘硬度相差了450 HV1左右。  相似文献   

13.
低温盐浴渗氮对Custom 465钢耐蚀及耐磨性的影响   总被引:1,自引:0,他引:1  
为了提高Custom 465马氏体沉淀硬化不锈钢的耐磨性,分别在440、480和520℃对580℃时效后的样品进行了2 h的盐浴渗氮,使用显微硬度计、X射线衍射仪、电化学工作站、球盘式摩擦磨损仪、表面轮廓仪、扫描电镜等设备,研究渗氮温度对Custom 465钢表面物相、硬度、渗层显微形貌、耐蚀性及耐磨性的影响. 随着渗氮温度升高,耐蚀性逐渐降低,但表面硬度增加,520℃处理后表面硬度增大到1240 HV,较未处理试样的400 HV明显上升,渗层厚度达到22μm. 440℃渗氮后表面物相为氮在马氏体基体中过饱和的α'N ,点蚀电位降低约60 mV;480℃时有少量CrN相析出,引起点蚀电位降低约180 mV,同时磨损体积下降约43%;520℃时CrN相的含量明显升高,自腐蚀电位降低约70 mV,无明显的稳态钝化区,磨损体积降低82%,减磨效果明显.  相似文献   

14.
通过模拟发射试验对表面镀铬、氮碳共渗两种表面处理条件下的身管进行了烧蚀模拟测试,研究在模拟工况下身管烧蚀情况.镀铬身管由于镀铬层固有的脆性,且受到高温高压火药气体的冲击作用,铬层内易产生显微裂纹,裂纹扩展至铬层与基体界面处,并沿着镀层与基体界面扩展,从而导致镀层剥落.氮碳共渗身管在烧蚀过程中,表面产生大量较深且较宽的裂纹,裂纹直接贯穿到基体使基体严重地被火药燃烧气体腐蚀,从而导致身管失效.在上述研究基础上,提出了两种不同处理方式下身管的失效模式.  相似文献   

15.
HA/YSZ/Ti6Al4V生物复合材料的制备与界面特性   总被引:1,自引:0,他引:1  
采用磁控溅射法制备出HA/YSZ/Ti6Al4V生物复合材料,利用X-射线衍射仪(XRD)、扫描电镜(SEM)和能谱分析(EDXA)研究复合涂层的相组成、表面微观形貌和界面微观形貌,并用划痕仪测定复合涂层与基体的界面结合力.结果表明:溅射的复合涂层中主要含有HA、ZrO2和Y2O3物相,此外还有少量的TCP和CaO相;该复合涂层表面凹凸不平,呈现网状微孔结构,其孔隙直径约为0.5~2μm,孔隙面积占薄膜表面积的30%~40%.划痕试验表明,复合涂层与Ti6Al4V基体结合力约为80N.复合涂层拉伸试样横断面分析显示,在涂层与基体界面处无裂纹,界面处存在Ti6Al4V基体成分Ti与复合涂层成分Ca、P问互扩散的扩散层,该扩散层厚度为0.5~1.5μm,复合涂层界面的结合机制为机械齿合和扩散结合.  相似文献   

16.
渗硼可以提高汽车齿轮钢20CrMnTi表面的硬度和耐磨性.用盐浴渗硼的新工艺方案处理后,可获得渗层深90 μm,组织为FeB+ Fe2B的渗硼层,最高硬度位于20 μm深度处,为1560 HV.试验显示,试件渗硼层与基体亲和性好,结合牢固,不易剥落,满足汽车齿轮工作要求.  相似文献   

17.
采用渗氮+物理沉积TiN涂层的复合表面处理技术,对42CrMo钢进行表面强化处理。通过对复合表面处理后的42CrMo钢进行显微组织观察和性能测试,结果表明4,2CrMo钢表层组织和性能分别受渗氮及PVD工艺和渗碳层与涂层界面之间的结合力影响。此外,表层组织硬度呈现明显的梯度结构,外表层TiN涂层硬度最高可达2 200 HV0.1以上,此层深度在1~3μm,而中间渗氮层硬度达756.1HV0.1,深度在10 mm左右。  相似文献   

18.
本文从机理的角度讨论了三种氮化层的组织、成分与性能的关系。通过金相组织、显微硬度、x光衍射、扫描电镜、电子探针及磨损实验,说明氧氮化耐磨性最好,渗层最深且耐蚀性也最好;离子氮化韧性最好;三种氮化均无脆性相Fe_2N出现。试验结果说明与渗层深度、表面疏松状况及结构有密切的关系。  相似文献   

19.
喷瓷管道瓷层与金属的密着行为研究   总被引:1,自引:0,他引:1  
采用火焰喷熔工艺在Q235金属管道表面喷熔耐蚀的玻璃釉料,对瓷层与金属的密着行为进行了研究。喷瓷层与金属的密着是热喷玻璃釉料熔体在基体表面上润湿、铺展和界面反应形成的。试验结果表明,热喷釉料在瓷层与金属界面上发生了一系列复杂的物理化学反应,形成了一个厚度约50μm的过渡层,铁、镍等元素在界面上发生富集。玻璃熔体侵蚀基体金属,溶解表面氧化物,在瓷层与金属界面上生成大量的氧化物结晶相。过渡层中岛状、块状的Fe-Ni合金以金属键与基体连接;玻璃相通过Fe-O和Si-O键与基体连接;玻璃熔体侵蚀基体表面,使其变得粗糙、凹凸不平,形成机械镶嵌连接。这3方面共同作用形成了密着层,瓷层通过密着层与金属连接。  相似文献   

20.
DZ22镍基定向凝固高温合金在高温环境中具有优良的高温稳定性,被广泛应用于高温热端工件.利用强流脉冲电子束(HCPEB)对DZ22合金进行轰击处理,提高其表面性能.对轰击后表面形貌及硬度研究发现,HCPEB轰击DZ22合金后,合金表面由于易熔物烧蚀、喷发而形成熔坑,并且易熔物所处位置对HCPEB轰击后所形成的熔坑形貌造成影响.轰击次数的不同影响DZ22合金表面强化相出现的位置以及形貌.轰击后在合金表面形成~4μm厚度的重熔层以及~30μm厚度的热影响区.不同的轰击次数对合金表面硬度的影响不同,轰击1,10次的合金表面硬度明显高于轰击5,20次.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号