首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The steady-state localisation of membrane proteins in the endocytic system is the result of many sorting events that occur at various points throughout the endosomal pathway. A protein that has been endocytosed from the plasma membrane or sorted at the trans-Golgi network (TGN) and transported to an endosome will ultimately be delivered to one of three destinations: the plasma membrane, the TGN or the lysosome. Where a membrane protein is trafficked to depends on the interactions between sorting motifs present in the membrane protein and the machinery that can decode these motifs. Much of the protein machinery that recognises sorting motifs is conserved from yeast toman, and in this review I will discuss this machinery and the motifs that govern endosomal protein sorting. (Part of a Multi-author Review)  相似文献   

2.
Endocytosis is a fundamental eukaryotic process required for remodelling plasma-membrane lipids and protein to ensure appropriate membrane composition. Increasing evidence from a number of cell types reveals that actin plays an active, and often essential, role at key endocytic stages. Much of our current mechanistic understanding of the endocytic process has come from studies in budding yeast and has been facilitated by yeast’s genetic amenability and by technological advances in live cell imaging. While endocytosis in metazoans is likely to be subject to a greater array of regulatory signals, recent reports indicate that spatiotemporal aspects of vesicle formation requiring actin are likely to be conserved across eukaryotic evolution. In this review we focus on the ‘modular’ model of endocytosis in yeast before highlighting comparisons with other cell types. Our discussion is limited to endocytosis involving clathrin as other types of endocytosis have not been demonstrated in yeast.  相似文献   

3.
Proteins of the ESCRT (endosomal sorting complex required for transport) complex function in membrane fission processes, such as multivesicular body (MVBs) formation, the terminal stages of cytokinesis, and separation of enveloped viruses from the plasma membrane. In mammalian cells, the machinery consists of a network of more than 20?proteins, organized into three complexes (ESCRT-I, -II, and -III), and other associated proteins such as the ATPase vacuolar protein sorting 4 (Vps4). Early biochemical studies of MVBs biogenesis in yeast support a model of sequential recruitment of ESCRT complexes on membranes. Live-cell imaging of ESCRT protein dynamics during viral budding and cytokinesis now reveal that this long-standing model of sequential assembly and disassembly holds true in mammalian cells.  相似文献   

4.
In eukaryotic cells, the shape of mitochondria can be tuned to various physiological conditions by a balance of fusion and fission processes termed mitochondrial dynamics. Mitochondrial dynamics controls not only the morphology but also the function of mitochondria, and therefore is crucial in many aspects of a cell’s life. Consequently, dysfunction of mitochondrial dynamics has been implicated in a variety of human diseases including cancer. Several proteins important for mitochondrial fusion and fission have been discovered over the past decade. However, there is emerging evidence that there are as yet unidentified proteins important for these processes and that the fusion/fission machinery is not completely conserved between yeast and vertebrates. The recent characterization of several mammalian proteins important for the process that were not conserved in yeast, may indicate that the molecular mechanisms regulating and controlling the morphology and function of mitochondria are more elaborate and complex in vertebrates. This difference could possibly be a consequence of different needs in the different cell types of multicellular organisms. Here, we review recent advances in the field of mitochondrial dynamics. We highlight and discuss the mechanisms regulating recruitment of cytosolic Drp1 to the mitochondrial outer membrane by Fis1, Mff, and MIEF1 in mammals and the divergences in regulation of mitochondrial dynamics between yeast and vertebrates.  相似文献   

5.
Endocytosis is a general term that is used to describe the internalization of external and plasma membrane molecules into the cell interior. In fact, several different mechanisms exist for the internalization step of this process. In this review we emphasize the work on the actin-dependent pathways, in particular in the yeastSaccharomyces cerevisiae, because several components of the molecular machinery are identified. In this yeast, the analysis of endocytosis in various mutants reveals a requirement for actin, calmodulin, a type I myosin, as well as a number of other proteins that affect actin dynamics. Some of these proteins have homology to proteins in animal cells that are believed to be involved in endocytosis. In addition, the demonstration that ubiquitination of some cell surface molecules is required for their efficient internalization is described. We compare the actin, myosin and ubiquitin requirements for endocytosis with recent results found studying these processes usingDictyostelium discoideum and animal cells.  相似文献   

6.
Dni1 and Dni2 facilitate cell fusion during mating. Here, we show that these proteins are interdependent for their localization in a plasma membrane subdomain, which we have termed the mating fusion domain. Dni1 compartmentation in the domain is required for cell fusion. The contribution of actin, sterol-dependent membrane organization, and Dni2 to this compartmentation was analysed, and the results showed that Dni2 plays the most relevant role in the process. In turn, the Dni2 exit from the endoplasmic reticulum depends on Dni1. These proteins share the presence of a cysteine motif in their first extracellular loop related to the claudin GLWxxC(8–10 aa)C signature motif. Structure–function analyses show that mutating each Dni1 conserved cysteine has mild effects, and that only simultaneous elimination of several cysteines leads to a mating defect. On the contrary, eliminating each single cysteine and the C-terminal tail in Dni2 abrogates Dni1 compartmentation and cell fusion. Sequence alignments show that claudin trans-membrane helixes bear small-XXX-small motifs at conserved positions. The fourth Dni2 trans-membrane helix tends to form homo-oligomers in Escherichia plasma membrane, and two concatenated small-XXX-small motifs are required for efficient oligomerization and for Dni2 export from the yeast endoplasmic reticulum. Together, our results strongly suggest that Dni2 is an ancient claudin that blocks Dni1 diffusion from the intercellular region where two plasma membranes are in close proximity, and that this function is required for Dni1 to facilitate cell fusion.  相似文献   

7.
8.
The protein kinase C (PKC) family of isoenzymes has been shown to regulate a variety of cellular processes, including receptor desensitization and internalization, and this has sparked interest in further delineation of the roles of specific isoforms of PKC in membrane trafficking and endocytosis. Recent studies have identified a novel translocation of PKC to a juxtanuclear compartment, the pericentrion, which is distinct from the Golgi complex but epicentered on the centrosome. Sustained activation of PKC (longer than 30 min) also results in sequestration of plasma membrane lipids and proteins to the same compartment, demonstrating a global effect on endocytic trafficking. This review summarizes these studies, particularly focusing on the characterization of the pericentrion as a distinct PKC-dependent subset of recycling endosomes. We also discuss emerging insights into a role for PKC as a central hub in regulating vesicular transport pathways throughout the cell, with implications for a wide range of pathobiologic processes, e.g. diabetes and abnormal neurotransmission or receptor desensitization. Received 11 August 2006; received after revision 20 September 2006; accepted 7 November 2006  相似文献   

9.
Endocytosis and mitosis are fundamental processes in a cell’s life. Nearly 50 years of research suggest that these processes are linked and that endocytosis is shut down as cells undergo the early stages of mitosis. Precisely how this occurs at the molecular level is an open question. In this review, we summarize the early work characterizing the inhibition of clathrin-mediated endocytosis and discuss recent challenges to this established concept. We also set out four proposed mechanisms for the inhibition: mitotic phosphorylation of endocytic proteins, altered membrane tension, moonlighting of endocytic proteins, and a mitotic spindle-dependent mechanism. Finally, we speculate on the functional consequences of endocytic shutdown during mitosis and where an understanding of the mechanism of inhibition will lead us in the future.  相似文献   

10.
Macroautophagy, the process by which cytosolic components and organelles are engulfed and degraded by a double-membrane structure, could be viewed as a specialized, multistep membrane transport process. As such, it intersects with the exocytic and endocytic membrane trafficking pathways. A number of Rab GTPases which regulate secretory and endocytic membrane traffic have been shown to play either critical or accessory roles in autophagy. The biogenesis of the pre-autophagosomal isolation membrane (or phagophore) is dependent on the functionality of Rab1. A non-canonical, Atg5/Atg7-independent mode of autophagosome generation from the trans-Golgi or endosome requires Rab9. Other Rabs, such as Rab5, Rab24, Rab33, and Rab7 have all been shown to be required, or involved at various stages of autophagosomal genesis and maturation. Another small GTPase, RalB, was very recently demonstrated to induce isolation membrane formation and maturation via its engagement of the exocyst complex, a known Rab effector. We summarize here what is now known about the involvement of Rabs in autophagy, and discuss plausible mechanisms with future perspectives.  相似文献   

11.
Trimeric guanine nucleotide-binding proteins (G proteins) function as the key regulatory elements in a number of transmembrane signaling cascades where they convey information from agonist-activated receptors to effector molecules. The subcellular localization of G proteins is directly related to their functional role, i.e., the dominant portion of the cellular pool of G proteins resides in the plasma membrane. An intimate association of G protein subunits with the plasma membrane has been well known for a long time. However, results of a number of independent studies published in the past decade have indicated clearly that exposure of intact target cells to agonists results in subcellular redistribution of the cognate G proteins from plasma membranes to the light-vesicular membrane fractions, in internalization from the cell surface into the cell interior and in transfer from the membrane to the soluble cell fraction (high-speed supernatant), i.e., solubilization. Solubilization of G protein α subunits as a consequence of stimulation of G protein-coupled receptors (GPCRs) with agonists has also been observed in isolated membrane preparations. The membrane-cytosol shift of G proteins was detected even after direct activation of these proteins by non-hydrolyzable analogues of GTP or by cholera toxin-induced ADP-ribosylation. In addition, prolonged stimulation of GPCRs with agonists has been shown to lead to down-regulation of the relevant G proteins. Together, these data suggest that G proteins might potentially participate in a highly complex set of events, which are generally termed desensitization of the hormone response. Internalization, subcellular redistribution, solubilization, and down-regulation of trimeric G proteins may thus provide an additional means (i.e., beside receptor-based mechanisms) to dampen the hormone or neurotransmitter response after sustained (long-term) exposure. Received 31 August 2001; received after revision 31 October 2001; accepted 7 November 2001  相似文献   

12.
Membrane fission is essential in various intracellular dissociative transport steps. The molecular mechanisms by which endocytic vesicles detach from the plasma membrane are being rapidly elucidated. Much less is known about the fission mechanisms operating at Golgi tubular networks; these include the Golgi transport and sorting stations, the trans-Golgi and cis-Golgi networks, where the geometry and physical properties of the membranes differ from those at the cell surface. Here we discuss the lipid and protein machineries that have so far been related to the fission process, with emphasis on those acting in the Golgi complex. Received 10 May 2002; received after revision 20 June 2002; accepted 26 June 2002 RID="*" ID="*"Corresponding author.  相似文献   

13.
Composition and conservation of the telomeric complex   总被引:6,自引:0,他引:6  
The telomere is composed of telomeric DNA and telomere-associated proteins. Recently, many telomere-associated proteins have been identified, and various telomere functions have been uncovered. In budding yeast, scRap1 binds directly to telomeric DNA, and other telomere regulators (Sir proteins and Rif proteins) are recruited to the telomeres by interacting with scRap1. Cdc13 binds to the most distal end of the chromosome and recruits telomerase to the telomeres. In fission yeast and humans, TTAGGG repeat binding factor (TRF) family proteins bind directly to telomeric DNA, and Rap1 proteins and other telomere regulators are recruited to the telomeres by interacting with the TRF family proteins. Both organisms have Pot1 proteins at the most distal end of the telomere instead of a budding-yeast Cdc13-like protein. Therefore, fission yeast and humans have in part common telomeric compositions that differ from that of budding yeast, a result that suggests budding yeast has lost some telomere components during the course of evolution.  相似文献   

14.
Current knowledge on exosome biogenesis and release   总被引:1,自引:1,他引:0  
Exosomes are nanosized membrane vesicles released by fusion of an organelle of the endocytic pathway, the multivesicular body, with the plasma membrane. This process was discovered more than 30 years ago, and during these years, exosomes have gone from being considered as cellular waste disposal to mediate a novel mechanism of cell-to-cell communication. The exponential interest in exosomes experienced during recent years is due to their important roles in health and disease and to their potential clinical application in therapy and diagnosis. However, important aspects of the biology of exosomes remain unknown. To explore the use of exosomes in the clinic, it is essential that the basic molecular mechanisms behind the transport and function of these vesicles are better understood. We have here summarized what is presently known about how exosomes are formed and released by cells. Moreover, other cellular processes related to exosome biogenesis and release, such as autophagy and lysosomal exocytosis are presented. Finally, methodological aspects related to exosome release studies are discussed.  相似文献   

15.
Antifungal proteins: targets,mechanisms and prospective applications   总被引:15,自引:2,他引:13  
All organisms have evolved several defence systems in order to protect themselves against bacteria, fungi and viruses. Higher organisms have developed a complex network of humoral and cellular responses, called adaptive immunity. A second defence system, innate immunity, was discovered in the early 1980s, consisting of small cationic peptides with a broad antimicrobial spectrum. These proteins act immediately at sites of infection or inflammation. The production of proteins with antimicrobial activity was not limited to higher organisms but was also found in insects, plants and microorganisms. During the last 2decades a broad range of proteins with very different structural features have been isolated and characterised from differing organisms ranging from bacteria to human beings. Over 500cationic membrane-acting proteins with antimicrobial and antifungal activities have been identified to date. Apart from these proteins, a very large number of antifungal proteins active on the fungal cell wall, on enzymes of the cell wall synthesis machinery, the plasma membrane and on intracellular targets have been characterised.Received 17 June 2003; received after revision 4 August 2003; accepted 18 August 2003  相似文献   

16.
The killing mediated by cytotoxic T lymphocytes (CTL) represents an important mechanism in the immune defence against tumors and virus infections. The lytic mechanism has been proposed to consist of a polarized secretion of granule-stored molecules, occurring on effector-target cell contact. By electron microscopy, membrane deposited, pore-like lesions are detected on the target cell membrane during cytolysis by CTL. These structures resembled strikingly pores formed during complement attack.Granules of CTL isolated by nitrogen cavitation and Percoll gradient centrifugation were shown to retain cytotoxic activity. Further purification of proteins stored in these granules led to the discovery of a membranolytic protein named perforin which was capable of polymerizing into pore-like structures. In addition to this cytolytic protein, a set of serine esterases was found as well as lysosomal enzymes and proteoglycans, whose function are not yet clearly defined. The role of perforin in the cytotoxic process is currently being explored by ablating the active gene in mice.  相似文献   

17.
The killing mediated by cytotoxic T lymphocytes (CTL) represents an important mechanism in the immune defence against tumors and virus infections. The lytic mechanism has been proposed to consist of a polarized secretion of granule-stored molecules, occurring on effector-target cell contact. By electron microscopy, membrane deposited, pore-like lesions are detected on the target cell membrane during cytolysis by CTL. These structures resembled strikingly pores formed during complement attack. Granules of CTL isolated by nitrogen cavitation and Percoll gradient centrifugation were shown to retain cytotoxic activity. Further purification of proteins stored in these granules led to the discovery of a membranolytic protein named perforin which was capable of polymerizing into pore-like structures. In addition to this cytolytic protein, a set of serine esterases was found as well as lysosomal enzymes and proteoglycans, whose function are not yet clearly defined. The role of perforin in the cytotoxic process is currently being explored by ablating the active gene in mice.  相似文献   

18.
Biological membrane fusion is driven by different types of molecular fusion machines. Most of these proteins are membrane-anchored by single transmembrane domains. SNARE proteins are essential for intracellular membrane fusion along the secretory and endocytic pathway, while various viral fusogens mediate infection of eukaryotic cells by enveloped viruses. Although both types of fusion proteins are evolutionarily quite distant from each other, they do share a number of structural and functional features. Their transmembrane domains are now known to be critical for the fusion reaction. We discuss at which stages they might contribute to bilayer mixing. Received 5 October 2006; received after revision 14 November 2006; accepted 8 January 2007  相似文献   

19.
Genetic and molecular analysis of the synaptotagmin family   总被引:5,自引:0,他引:5  
Secretion is a fundamental cellular process used by all eukaryotes to insert proteins into the plasma membrane and transport signaling molecules and intravesicular proteins into the extracellular space. Secretion requires the fusion of two phospholipid bilayers within the cell, an energetically unfavorable process. A conserved repertoire of vesicle-trafficking proteins has evolved that function to overcome this energy barrier and temporally and spatially control membrane fusion within the cell. Within neurons, opening of synaptic calcium channels and subsequent calcium entry triggers synchronous synaptic vesicle exocytosis and neurotransmitter release into the synaptic cleft. After fusion, synaptic vesicles undergo endocytosis, are refilled with neurotransmitter, and return to the vesicle pool for further rounds of cycling. It is within this local synaptic trafficking pathway that the synaptotagmin family of calcium-binding synaptic vesicle proteins has been postulated to function. Here we review the current literature on the function of the synaptotagmin family and discuss the implications for synaptic transmission and membrane trafficking. Received 14 August 2000; received after revision 20 September 2000, accepted 14 October 2000  相似文献   

20.
The activation and signalling activity of the membrane μ-opioid receptor (MOP-R) involve interactions among the receptor, G-proteins, effectors and many other membrane or cytosolic proteins. Decades of investigation have led to identification of the main biochemical processes, but the mechanisms governing the successive protein–protein interactions have yet to be established. We will need to unravel the dynamic membrane organisation of this complex and multifaceted molecular machinery if we are to understand these mechanisms. Here, we review and discuss advances in our understanding of the signalling mechanism of MOP-R resulting from biochemical or biophysical studies of the organisation of this receptor in the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号