首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
讨论了Fuzzy群中Fuzzy同余关系与正规Fuzzy子群的联系,证明所有Fuzzy同余关系所组成的格同构于所有正规拟子群所组成的格。还讨论了正规Fuzzy子群直积的几个性质。  相似文献   

2.
Hecke群为PSL(2,R)的一类重要的离散子群,它们在研究Dirichlet级数起了重要的作用。Hecke群的有限指数的子群(称这些子群为Hecke群的同余子群)同样在研究Dirichlet级数发挥了重要作用,调查这些子群的结构是非常必要的。这些子群中,人们特别关注那些正规的同余子群。对于Hecke群H(q),级为2的幂的主同余正规子群的结构将会被调查。  相似文献   

3.
从半群理论的观点出发,证明了群的同余格与它的正规子群格是完备格同构的,这加强了已知的传统结论  相似文献   

4.
给出了S-系集合A上的模糊同余的定义,用A上的模糊二元关系θ定义的模糊二元关系θ刻画了由θ生成的模糊同余θ.  相似文献   

5.
给出了由L-fuzzy半群上的L-fuzzy关系生成的L-fuzzy同余关系.  相似文献   

6.
本文引入了г-群的模糊核正规系的概念,证明了г-群的模糊同余核是模糊正规系。而且证明了给出一个模糊核正规系,它决定了г-群的一个模糊同余。  相似文献   

7.
该文证明了半环S的正规理想之集M的基数小于等于S上同余关系之集N的基数,并且存在半环S,│M│≠│N│;同时讨论了由两个著名的同余关系,即Bourne同余与Iizuka同余得到的商半环的性质及其它们之间的联系;最后,给出了关于一类特殊半环,其商半环是环的一个充分必要条件。  相似文献   

8.
研究MS代数的主同余关系的可补性,给出了MS代数的主同余关系是可补的充要条件。  相似文献   

9.
关于Bernoulli数的同余关系   总被引:7,自引:2,他引:7       下载免费PDF全文
王云葵 《广西科学》1999,6(4):250-252
利用等幂和与判别素数的充要条件,获得了Bernoulli数的同余关系,得到了整除Bernoulli数分子的判别方法。  相似文献   

10.
刻画了P-反演半群上的特征迹为一给定强正规等价关系的最小强P-同余.  相似文献   

11.
模m同余关系的进一步讨论刘晓霞(西北大学计算机科学系,西安710069;作者,女,30岁,讲师)定义1[1]设u=〈X,*,+,△,…,〉是代数系统,若X中的等价关系E还对X中任意元素x1,x2,y1和y2,这里x1Ex2,y1Ey2关于所有运算“...  相似文献   

12.
给出了Heyting代数中同余关系的一种简单定义,这种定义并不改变全体滤子和全体同余关系之间的一一对应性,并且借助滤子证明了这种定义是Heyting代数作为泛代数的同余关系的简化。最后证明了全体滤子之集作为完备格同构于全体同余关系之集。  相似文献   

13.
刻画了Fuzzy格中理想的最小同余扩张,设I为Fuzzy格F的任一理想,令Tc(I)={x∈F|Ed∈I,使得x∧d’≤d∧d’),则Tc(I)是F中包含I的最小同余理想.证明了正规Fuzzy格(或Kleene代数)F中,理想E={x∧x’|x∈F}的最小同余扩张是一个W-理想,即存在唯一的同余关系以它为核.  相似文献   

14.
文中给出了模m的同余类环上的n阶完全线性子群的定义及性质 ,利用子群进行分类 ,通过陪集的计数定理 ,给出了其阶的计算公式。  相似文献   

15.
对Fuzzy理想做了进一步的研究,证明了几个主要的性质,得到了在格的同态映射θ下,Fuzzy理想与其像、逆像之间的关系,并建立了它与Fuzzy同余理想间的关系。  相似文献   

16.
给出了格环上Fuzzy同余关系的定义,研究了它的若干性质,证明了格环上的全体Fuzzy同余关系关于Fuzzy集合的包含关系构成一个模格,并利用Fuzzy同余类给出了Fuzzy同余商格环的定义及其同态、同构的若干性质。  相似文献   

17.
分配同余簇是半分配同余簇的真子类,给出了半分配同余簇上的一个重要的相仿于分配同余簇上的结论.  相似文献   

18.
本文根据(λ,μ)-模糊正规子群定义了新的同余关系,由此提出了(λ,μ)-模糊粗糙子群和(λ,μ)-模糊粗糙正规子群的概念,并研究了它们的性质.  相似文献   

19.
本文讨论n元Fuzzy关系与Fuzzy群之间的联系.研究n元Fuzzy关系成为一个群G~n月上的Fuzzy子群及Fuzzy正规子群,Fuzzy 共轭子群的条件并举出反例说明P·Bhattacharya和 P·Mukhrjee的一些错误  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号