首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
多目标粒子群优化算法研究   总被引:1,自引:0,他引:1  
在过去的十多年,粒子群算法对多目标优化问题的应用研究取得了较大的进展.本文首先描述多目标粒子群优化算法(MOPSO)的基本流程,然后从算法设计与应用等方面回顾MOPSO的研究进展,最后对该算法未来的研究进行了分析和展望.  相似文献   

2.
泊位分配直接影响着港口船舶的进港靠泊时间和作业效率.为获得合理的集装箱码头泊位分配计划,建立了以最小化船舶在港时间和码头运营成本的集成优化模型,并应用粒子群算法进行求解.通过与Gurobi软件求解结果进行对比,发现在求解大规模的船舶调度问题时,粒子群算法在求解时间上比Gurobi更有效.  相似文献   

3.
带自适应压缩因子粒子群优化算法   总被引:1,自引:0,他引:1  
针对函数全局优化问题,提出了一种自适应压缩因子粒子群优化算法。研究的结果是对粒子群优化算法定义了一个与迭代步有关的压缩因子,随着迭代步不断增大压缩因子逐渐减小,使得在算法初期,压缩因子较大,提高算法的全局搜索能力,在算法后期,压缩因子较小,提高算法的局部搜索能力,另外,把差分进化算法中的交叉与变异思想引入到该粒子群优化算法中,改善了粒子的多样性。最后把算法应用到两类测试问题中,并与其他粒子群优化算法进行比较分析,数值结果表明,算法是可行的、有效的。该成果对全局优化问题的求解具有一定的参考价值和指导意义。  相似文献   

4.
针对现有特征选择方法中存在的收敛速度慢和计算效率低等问题,提出了一种基于樽海鞘群与粒子群优化的混合优化(hybrid optimization of salp swarm algorithm and particle swarm optimization,HOSSPSO)特征选择方法,该方法在樽海鞘群算法(salp swarm algorithm,SSA)的基础上,引入粒子群优化(particle swarm optimization,PSO),提高了SSA的收敛速度,改进了探索和开发步骤的效率,增加了解空间更多的灵活性和多样性,使得方法能够迅速获得全局最优值.为了验证算法的性能,在2个实验序列上进行了测试:第一个实验序列使用基准函数,将HOSSPSO与标准SSA、PSO进行了比较;第二个实验序列采用不同的UCI数据集,通过提出的算法确定最佳特征集.实验结果表明,相比于其他优化算法,HOSSPSO的性能更具优势,在多项评估指标中获得较好的效果,能以极少量的特征获得最大的分类精度.  相似文献   

5.
为了提高神经网络集成中个体网络的差异性,并减少将集成用于预测时的计算量,本文结合粒子群优化算法和个体网络的并行学习机制,提出了一种基于粒子群优化的并行学习神经网络集成构造方法。实验表明,和传统的集成构造方法相比,该构造方法具有比较好的性能。  相似文献   

6.
全局粒子群优化算法   总被引:1,自引:0,他引:1  
针对粒子群优化算法在解决大维数的无约束优化问题时具有较差的收敛性和稳定性,提出了一种全局粒子群优化(GPSO)算法.GPSO算法引入了一种新的惯性权重,它被定义为一个指数型函数与一个随机数的乘积,这有利于维持算法的全局搜索和局部搜索.同时,GPSO算法对全局最优解进行了小的扰动,这可以有效地避免算法早熟.使用三种粒子群优化算法来解决6个无约束优化问题.仿真结果说明,与其他两种粒子群优化算法相比,GPSO算法具有更快的收敛速度和更强的逃离局部最优的能力.  相似文献   

7.
粒子群优化算法研究进展   总被引:1,自引:0,他引:1  
粒子群优化(PSO)算法是一种源于人工生命和演化计算理论的新兴优化技术.其基本思想为:每个粒子被随机的初始化以表示一个可能的解,并在解空间通过更新迭代搜索最优解.PSO的优势在于算法简单,对目标函数要求少,易于实现而又功能强大.目前,已受到演化计算领域的学者们的广泛关注,并提出了许多改进的算法.本文阐述基本粒子群的原理,给出了各种改进的算法,并展望了PSO的发展方向.  相似文献   

8.
陈君波  嵇鼎毅 《科技信息》2009,(16):88-88,90
粒子群优化(PSO)算法是一类随机全局优化技术,其思想来源于人工生命和演化计算理论。PSO算法通过粒子间的相互作用发现复杂搜索空间中的最优区域。PSO的优势在于简单容易实现而又功能强大。PSO已成为国际演化计算界研究的热点。该文介绍了基本的PSO算法及其应用,并讨论将来可能的研究内容。  相似文献   

9.
针对K-均值聚类算法存在的缺陷,将改进的粒子群优化算法———智能单粒子优化算法(ISPO)应用到聚类分析当中来,提出一种混合聚类算法ISPO+K-means.该算法分为两个阶段:第一阶段利用ISPO算法较强的全局寻优能力形成初始聚类,第二阶段将初始聚类结果通过K-means算法形成最终聚类结果输出.与K-均值聚类算法和...  相似文献   

10.
梁树军 《科学技术与工程》2013,13(11):3109-3112
为了加快粒子群算法收敛速度、提高粒子群的全局优化效率和精确度从而避免陷入局部最优解,提出了一种改进型的基于质心的粒子群优化算法模型,该模型能有效地提高粒子群之间的合作和信息共享能力。仿真结果表明基于"质心"的改进型粒子群优化算法在收敛性方面具有显著优越性。  相似文献   

11.
为有效求解带有约束条件的优化问题,提出一种动态多种群粒子群算法。采用动态多种群策略和广泛学习策略来提升种群的多样性, 并根据人类社会“人尽其才”的思想, 为每个子群指派成员, 以发挥每个粒子的最大效用。采用动态变异策略, 对全局最优粒子(Gbest)进行变异操作以提升算法跳出局部最优解的能力。在基准函数的测试结果中显示DMCPSO获得了较高的求解精度。  相似文献   

12.
针对现有多目标微粒群算法存在容易陷于局部极值、收敛速度慢、函数评价次数多等不足,提出了一种多样性引导的2阶段多目标微粒群算法,依据种群多样性动态使用不同的变异方式,采用了2种不同的领导微粒选择方式,基于Pareto占优排序和拥挤距离来控制外部档案中解的数目。针对多个多目标测试函数进行了实验,并与其他文献的方法进行了比较,验证了算法的有效性。  相似文献   

13.
把三阶累积量和粒子群优化器应用于立体声回波消除.首先,把三阶累积量误差用作调整自适应滤波器系数的准则而提出了一个新的代价函数;然后,通过利用改进的粒子群优化器来优化新的代价函数而获得了一个用于立体声回波消除的累积量域自适应滤波算法.模拟结果显示:利用三阶累积量和粒子群优化器的立体声回波消除算法是可行和有效的,并有好的收敛性能.  相似文献   

14.
分组PSO算法将粒子群分成几个小群,每个小群有不同的进化参数且每个小群分别进化,在间隔一定时刻进行组间变异和重组操作,并且在重组的同时对各小组参数进行粒子群优化,相比普通粒子群算法无论在收敛速度还是在精度和操作方便性上都有提高.  相似文献   

15.
近年来,为了提高同化精度和减少同化时间,粒子群算法(PSO)被引入到数值天气预报资料同化中来.粒子群算法虽然令同化精度有所提高,但同化时间仍然存在较大缺陷.基于此,首先设计了一种改进的并行粒子群算法(P2PSO),然后应用于含不连续"开关"过程的变分资料同化中,与时变双重压缩因子粒子群算法(PSOTVCF)和动态权重粒...  相似文献   

16.
提出一种求解约束优化问题的改进粒子群优化算法.该算法更多地考虑了当前全局最优粒子和个体最优粒子对粒子群搜索能力的影响,对速度更新公式做了改进;然后利用修正的可行基规则来更新个体极值和全局极值,从而引导不可行粒子尽可能到达可行的区域,以增加种群的多样性和提高全局搜索能力.数值实验表明,该算法是有效、稳定且计算精度高的全局...  相似文献   

17.
大规模的数据挖掘如聚类问题迫切需要大量计算,提出了自适应微粒群优化的并行聚类算法。通过从多种群并行地开始搜索,基于群体搜索技术的微粒群优化算法减少了初始条件的影响,采用任务并行和部分异步通信策略,降低计算时间。结合并行微粒群算法的自适应参数动态优化特性,克服群体逐渐失去迁移性而停止进化的问题,保持群体多样性从而了避免种群退化。仿真实验证明,该算法在并行机群上运行时,加快了聚类算法的计算速度,提高了聚类质量。  相似文献   

18.
粒子群优化算法是求解函数优化问题的一种新的进化算法,然而它在求解高维函数时容易陷入局部最优.为了克服这个缺点,通过调整粒子的速度更新公式,使粒子获得更多信息来调整自身的状态,以增强算法跳出局部最优的能力.通过对6个基准函数的仿真实验,表明了改进算法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号