首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Since the invention of the laser more than 50 years ago, scientists have striven to achieve amplification on atomic transitions of increasingly shorter wavelength. The introduction of X-ray free-electron lasers makes it possible to pump new atomic X-ray lasers with ultrashort pulse duration, extreme spectral brightness and full temporal coherence. Here we describe the implementation of an X-ray laser in the kiloelectronvolt energy regime, based on atomic population inversion and driven by rapid K-shell photo-ionization using pulses from an X-ray free-electron laser. We established a population inversion of the Kα transition in singly ionized neon at 1.46 nanometres (corresponding to a photon energy of 849 electronvolts) in an elongated plasma column created by irradiation of a gas medium. We observed strong amplified spontaneous emission from the end of the excited plasma. This resulted in femtosecond-duration, high-intensity X-ray pulses of much shorter wavelength and greater brilliance than achieved with previous atomic X-ray lasers. Moreover, this scheme provides greatly increased wavelength stability, monochromaticity and improved temporal coherence by comparison with present-day X-ray free-electron lasers. The atomic X-ray lasers realized here may be useful for high-resolution spectroscopy and nonlinear X-ray studies.  相似文献   

2.
Neutze R  Wouts R  van der Spoel D  Weckert E  Hajdu J 《Nature》2000,406(6797):752-757
Sample damage by X-rays and other radiation limits the resolution of structural studies on non-repetitive and non-reproducible structures such as individual biomolecules or cells. Cooling can slow sample deterioration, but cannot eliminate damage-induced sample movement during the time needed for conventional measurements. Analyses of the dynamics of damage formation suggest that the conventional damage barrier (about 200 X-ray photons per A2 with X-rays of 12 keV energy or 1 A wavelength) may be extended at very high dose rates and very short exposure times. Here we have used computer simulations to investigate the structural information that can be recovered from the scattering of intense femtosecond X-ray pulses by single protein molecules and small assemblies. Estimations of radiation damage as a function of photon energy, pulse length, integrated pulse intensity and sample size show that experiments using very high X-ray dose rates and ultrashort exposures may provide useful structural information before radiation damage destroys the sample. We predict that such ultrashort, high-intensity X-ray pulses from free-electron lasers that are currently under development, in combination with container-free sample handling methods based on spraying techniques, will provide a new approach to structural determinations with X-rays.  相似文献   

3.
自由电子激光器的发展及其应用   总被引:1,自引:0,他引:1  
自由电子激光器是一种完全新型的相干电源,它的一些特点是其它相干光源所不可比拟的.本文在简述自由电子激光器的原理之后,介绍自由电子激光器的发展及其应用.  相似文献   

4.
McKeever J  Boca A  Boozer AD  Buck JR  Kimble HJ 《Nature》2003,425(6955):268-271
Conventional lasers (from table-top systems to microscopic devices) typically operate in the so-called weak-coupling regime, involving large numbers of atoms and photons; individual quanta have a negligible impact on the system dynamics. However, this is no longer the case when the system approaches the regime of strong coupling for which the number of atoms and photons can become quite small. Indeed, the lasing properties of a single atom in a resonant cavity have been extensively investigated theoretically. Here we report the experimental realization of a one-atom laser operated in the regime of strong coupling. We exploit recent advances in cavity quantum electrodynamics that allow one atom to be isolated in an optical cavity in a regime for which one photon is sufficient to saturate the atomic transition. The observed characteristics of the atom-cavity system are qualitatively different from those of the familiar many-atom case. Specifically, our measurements of the intracavity photon number versus pump intensity indicate that there is no threshold for lasing, and we infer that the output flux from the cavity mode exceeds that from atomic fluorescence by more than tenfold. Observations of the second-order intensity correlation function demonstrate that our one-atom laser generates manifestly quantum (nonclassical) light, typified by photon anti-bunching and sub-poissonian photon statistics.  相似文献   

5.
The spectral purity of an oscillator is central to many applications, such as detecting gravity waves, defining the second, ground-state cooling and quantum manipulation of nanomechanical objects, and quantum computation. Recent proposals suggest that laser oscillators which use very narrow optical transitions in atoms can be orders of magnitude more spectrally pure than present lasers. Lasers of this high spectral purity are predicted to operate deep in the 'bad-cavity', or superradiant, regime, where the bare atomic linewidth is much less than the cavity linewidth. Here we demonstrate a Raman superradiant laser source in which spontaneous synchronization of more than one million rubidium-87 atomic dipoles is continuously sustained by less than 0.2 photons on average inside the optical cavity. By operating at low intracavity photon number, we demonstrate isolation of the collective atomic dipole from the environment by a factor of more than ten thousand, as characterized by cavity frequency pulling measurements. The emitted light has a frequency linewidth, measured relative to the Raman dressing laser, that is less than that of single-particle decoherence linewidths and more than ten thousand times less than the quantum linewidth limit typically applied to 'good-cavity' optical lasers, for which the cavity linewidth is much less than the atomic linewidth. These results demonstrate several key predictions for future superradiant lasers, which could be used to improve the stability of passive atomic clocks and which may lead to new searches for physics beyond the standard model.  相似文献   

6.
When an intense laser pulse is focused into a gas, the light-atom interaction that occurs as atoms are ionized results in an extremely nonlinear optical process--the generation of high harmonics of the driving laser frequency. Harmonics that extend up to orders of about 300 have been reported, some corresponding to photon energies in excess of 500 eV. Because this technique is simple to implement and generates coherent, laser-like, soft X-ray beams, it is currently being developed for applications in science and technology; these include probing the dynamics in chemical and materials systems and imaging. Here we report that by carefully tailoring the shapes of intense light pulses, we can control the interaction of light with an atom during ionization, improving the efficiency of X-ray generation by an order of magnitude. We demonstrate that it is possible to tune the spectral characteristics of the emitted radiation, and to steer the interaction between different orders of nonlinear processes.  相似文献   

7.
Ourjoumtsev A  Kubanek A  Koch M  Sames C  Pinkse PW  Rempe G  Murr K 《Nature》2011,474(7353):623-626
Single quantum emitters such as atoms are well known as non-classical light sources with reduced noise in the intensity, capable of producing photons one by one at given times. However, the light field emitted by a single atom can exhibit much richer dynamics. A prominent example is the predicted ability of a single atom to produce quadrature-squeezed light, which has fluctuations of amplitude or phase that are below the shot-noise level. However, such squeezing is much more difficult to observe than the emission of single photons. Squeezed beams have been generated using macroscopic and mesoscopic media down to a few tens of atoms, but despite experimental efforts, single-atom squeezing has so far escaped observation. Here we generate squeezed light with a single atom in a high-finesse optical resonator. The strong coupling of the atom to the cavity field induces a genuine quantum mechanical nonlinearity, which is several orders of magnitude larger than in typical macroscopic media. This produces observable quadrature squeezing, with an excitation beam containing on average only two photons per system lifetime. In sharp contrast to the emission of single photons, the squeezed light stems from the quantum coherence of photon pairs emitted from the system. The ability of a single atom to induce strong coherent interactions between propagating photons opens up new perspectives for photonic quantum logic with single emitters.  相似文献   

8.
Synchrotrons have for decades provided invaluable sources of soft X-rays, the application of which has led to significant progress in many areas of science and technology. But future applications of soft X-rays--in structural biology, for example--anticipate the need for pulses with much shorter duration (femtoseconds) and much higher energy (millijoules) than those delivered by synchrotrons. Soft X-ray free-electron lasers should fulfil these requirements but will be limited in number; the pressure on beamtime is therefore likely to be considerable. Laser-driven soft X-ray sources offer a comparatively inexpensive and widely available alternative, but have encountered practical bottlenecks in the quest for high intensities. Here we establish and characterize a soft X-ray laser chain that shows how these bottlenecks can in principle be overcome. By combining the high optical quality available from high-harmonic laser sources (as a seed beam) with a highly energetic soft X-ray laser plasma amplifier, we produce a tabletop soft X-ray femtosecond laser operating at 10 Hz and exhibiting full saturation, high energy, high coherence and full polarization. This technique should be readily applicable on all existing laser-driven soft X-ray facilities.  相似文献   

9.
Solid-state superconducting circuits are versatile systems in which quantum states can be engineered and controlled. Recent progress in this area has opened up exciting possibilities for exploring fundamental physics as well as applications in quantum information technology; in a series of experiments it was shown that such circuits can be exploited to generate quantum optical phenomena, by designing superconducting elements as artificial atoms that are coupled coherently to the photon field of a resonator. Here we demonstrate a lasing effect with a single artificial atom--a Josephson-junction charge qubit--embedded in a superconducting resonator. We make use of one of the properties of solid-state artificial atoms, namely that they are strongly and controllably coupled to the resonator modes. The device is essentially different from existing lasers and masers; one and the same artificial atom excited by current injection produces many photons.  相似文献   

10.
Liu C  Dutton Z  Behroozi CH  Hau LV 《Nature》2001,409(6819):490-493
Electromagnetically induced transparency is a quantum interference effect that permits the propagation of light through an otherwise opaque atomic medium; a 'coupling' laser is used to create the interference necessary to allow the transmission of resonant pulses from a 'probe' laser. This technique has been used to slow and spatially compress light pulses by seven orders of magnitude, resulting in their complete localization and containment within an atomic cloud. Here we use electromagnetically induced transparency to bring laser pulses to a complete stop in a magnetically trapped, cold cloud of sodium atoms. Within the spatially localized pulse region, the atoms are in a superposition state determined by the amplitudes and phases of the coupling and probe laser fields. Upon sudden turn-off of the coupling laser, the compressed probe pulse is effectively stopped; coherent information initially contained in the laser fields is 'frozen' in the atomic medium for up to 1 ms. The coupling laser is turned back on at a later time and the probe pulse is regenerated: the stored coherence is read out and transferred back into the radiation field. We present a theoretical model that reveals that the system is self-adjusting to minimize dissipative loss during the 'read' and 'write' operations. We anticipate applications of this phenomenon for quantum information processing.  相似文献   

11.
Attosecond control of electronic processes by intense light fields   总被引:12,自引:0,他引:12  
The amplitude and frequency of laser light can be routinely measured and controlled on a femtosecond (10(-15) s) timescale. However, in pulses comprising just a few wave cycles, the amplitude envelope and carrier frequency are not sufficient to characterize and control laser radiation, because evolution of the light field is also influenced by a shift of the carrier wave with respect to the pulse peak. This so-called carrier-envelope phase has been predicted and observed to affect strong-field phenomena, but random shot-to-shot shifts have prevented the reproducible guiding of atomic processes using the electric field of light. Here we report the generation of intense, few-cycle laser pulses with a stable carrier envelope phase that permit the triggering and steering of microscopic motion with an ultimate precision limited only by quantum mechanical uncertainty. Using these reproducible light waveforms, we create light-induced atomic currents in ionized matter; the motion of the electronic wave packets can be controlled on timescales shorter than 250 attoseconds (250 x 10(-18) s). This enables us to control the attosecond temporal structure of coherent soft X-ray emission produced by the atomic currents--these X-ray photons provide a sensitive and intuitive tool for determining the carrier-envelope phase.  相似文献   

12.
Röhlsberger R  Wille HC  Schlage K  Sahoo B 《Nature》2012,482(7384):199-203
The manipulation of light-matter interactions by quantum control of atomic levels has had a profound impact on optical sciences. Such manipulation has many applications, including nonlinear optics at the few-photon level, slow light, lasing without inversion and optical quantum information processing. The critical underlying technique is electromagnetically induced transparency, in which quantum interference between transitions in multilevel atoms renders an opaque medium transparent near an atomic resonance. With the advent of high-brilliance, accelerator-driven light sources such as storage rings or X-ray lasers, it has become attractive to extend the techniques of optical quantum control to the X-ray regime. Here we demonstrate electromagnetically induced transparency in the regime of hard X-rays, using the 14.4-kiloelectronvolt nuclear resonance of the M?ssbauer isotope iron-57 (a two-level system). We exploit cooperative emission from ensembles of the nuclei, which are embedded in a low-finesse cavity and excited by synchrotron radiation. The spatial modulation of the photonic density of states in a cavity mode leads to the coexistence of superradiant and subradiant states of nuclei, respectively located at an antinode and a node of the cavity field. This scheme causes the nuclei to behave as effective three-level systems, with two degenerate levels in the excited state (one of which can be considered metastable). The radiative coupling of the nuclear ensembles by the cavity field establishes the atomic coherence necessary for the cancellation of resonant absorption. Because this technique does not require atomic systems with a metastable level, electromagnetically induced transparency and its applications can be transferred to the regime of nuclear resonances, establishing the field of nuclear quantum optics.  相似文献   

13.
X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (~200?nm to 2?μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.  相似文献   

14.
Vahala KJ 《Nature》2003,424(6950):839-846
Optical microcavities confine light to small volumes by resonant recirculation. Devices based on optical microcavities are already indispensable for a wide range of applications and studies. For example, microcavities made of active III-V semiconductor materials control laser emission spectra to enable long-distance transmission of data over optical fibres; they also ensure narrow spot-size laser read/write beams in CD and DVD players. In quantum optical devices, microcavities can coax atoms or quantum dots to emit spontaneous photons in a desired direction or can provide an environment where dissipative mechanisms such as spontaneous emission are overcome so that quantum entanglement of radiation and matter is possible. Applications of these remarkable devices are as diverse as their geometrical and resonant properties.  相似文献   

15.
A microscopic quantum system under continuous observation exhibits at random times sudden jumps between its states. The detection of this quantum feature requires a quantum non-demolition (QND) measurement repeated many times during the system's evolution. Whereas quantum jumps of trapped massive particles (electrons, ions or molecules) have been observed, this has proved more challenging for light quanta. Standard photodetectors absorb light and are thus unable to detect the same photon twice. It is therefore necessary to use a transparent counter that can 'see' photons without destroying them. Moreover, the light needs to be stored for durations much longer than the QND detection time. Here we report an experiment in which we fulfil these challenging conditions and observe quantum jumps in the photon number. Microwave photons are stored in a superconducting cavity for times up to half a second, and are repeatedly probed by a stream of non-absorbing atoms. An atom interferometer measures the atomic dipole phase shift induced by the non-resonant cavity field, so that the final atom state reveals directly the presence of a single photon in the cavity. Sequences of hundreds of atoms, highly correlated in the same state, are interrupted by sudden state switchings. These telegraphic signals record the birth, life and death of individual photons. Applying a similar QND procedure to mesoscopic fields with tens of photons should open new perspectives for the exploration of the quantum-to-classical boundary.  相似文献   

16.
A novel approach to producing coherent hard X-ray based on the echo-enabled staged harmonic generation (EESHG) free-electron laser scheme is proposed. This scheme is not a simple cascaded echo-enabled harmonic generation (EEHG) but consists of an EEHG and a conventional high-gain harmonic generation (HGHG) like configuration, which also works in the EEHG principle. It is shown that fully coherent hard X-ray radiation can be obtained directly from a conventional VUV seed laser with reduced size and cost in c...  相似文献   

17.
D S Wiersma  S Cavalieri 《Nature》2001,414(6865):708-709
Random lasers have fascinating emission properties that lie somewhere between those of a conventional laser and a common light-bulb. We have created a random laser that can be brought above and below its threshold for laser emission by small changes in its temperature, thereby creating a light source with a temperature-tunable colour spectrum. As a single random laser can be made as small as a grain of tens of micrometres in diameter, we expect our device to find application in photonics, temperature-sensitive displays and screens, and in remote temperature sensing. Lasers are now commonplace - for example, they are used in industry and in hospitals, in bar-code scanners and compact-disc players. Conventional lasers are based on an optically active material and some sort of laser cavity that traps light for long enough for laser action to occur. A new type of laser source, known as a random laser, has been discovered that does not require a regular cavity but instead depends on a diffusive material such as a fine powder. In a random laser, light waves are trapped by multiple light scattering (that is, light diffusion), which takes over the role of the cavity in a regular laser (Fig. 1). The emission of a random-laser source has a well defined colour spectrum and can be pulsed, just like a regular laser, although its emission is in several directions because of the intrinsic randomness of the system.  相似文献   

18.
Liss KD  Hock R  Gomm M  Waibel B  Magerl A  Krisch M  Tucoulou R 《Nature》2000,404(6776):371-373
The temporal structure and high brilliance of the X-ray beams produced by third-generation synchrotrons open up new possibilities in time-dependent diffraction and spectroscopy, where timescales down to the sub-nanosecond regime can now be accessed. These beam properties are such that one can envisage the development of the X-ray equivalent of optical components, such as photon delay lines and resonators, that have proved indispensable in a wide range of experiments--for example, pump-probe and multiple-interaction experiments--and (through shaping the temporal structure and repetition rate of the beams) time-dependent measurements in crystallography, physics, biology and chemistry. Optical resonators, such as those used in lasers, are available at wavelengths from the visible to soft X-rays. Equivalent components for hard X-rays have been discussed for more than thirty years, but have yet to be realized. Here we report the storage of hard X-ray photons (energy 15.817 keV) in a crystal resonator formed by two plates of crystalline silicon. The photons are stored for as many as 14 back-and-forth cycles within the resonator, each cycle separated by one nanosecond.  相似文献   

19.
On γ-ray laser     
We review various possibilities for realizing aγ-ray laser. We conclude that, similar to the free-electron laser, it is practical to generate the γ-ray laser by the stimulated emission of radiation from wiggling positrons channelled in a periodically bent crystal. It is the time to research this possibility both theoretically and experimentally with big efforts.  相似文献   

20.
X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000?K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号