首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
以大庆常压渣油为原料 ,针对A ,B两种不同类型的催化剂 ,采用小型固定流化床实验装置 ,考察了剂油比对催化裂解气体产物分布的影响。研究发现 ,不同类型的催化剂 ,其剂油比对裂解气体产物中各组分收率的影响规律不尽相同。对于A型催化剂 ,在反应温度为 70 0℃、水油比为 0 .6 3和停留时间为 1.8s的实验条件下 ,总低碳烯烃收率在 5 0 %以上 ,并且随剂油比的增大 ,总低碳烯烃收率线性增加 ;对于B型催化剂 ,在反应温度为 6 5 0℃、水油比为 0 75和停留时间为 1.7s的实验条件下 ,总低碳烯烃收率最高可达 4 4 % ,并且随剂油比的增加 ,总低碳烯烃收率有一个最大值。用最小二乘法对实验数据进行回归 ,得出了实验考察范围内乙烯、丙烯、丁烯和总低碳烯烃收率随剂油比的变化规律。实验结果还显示 ,催化剂对催化裂解起重要作用 ;不同类型的催化剂 ,不仅裂解产物的变化规律不同 ,其反应机理也会有很大区别  相似文献   

2.
剂油比对大庆常压渣油催化裂解气体产物分布的影响   总被引:1,自引:0,他引:1  
以大庆常压渣油为原料,针对A,B两种不同类型的催化剂,采用小型固定流化床实验装置,考察了剂油比对催化裂解气体产物分布的影响。研究发现,不同类型的催化剂,其剂油比对裂解气体产物中各组分收率的影响规律不尽相同。对于A型催化剂,在反应温度为700℃、水油比为0.63和停留时间为1.8s的实验条件下,总低碳烯烃收率在50%以上,并且随剂油比的增大,总低碳烯烃收率线性增加;对于B型催化剂,在反应温度为650℃、水油比为0.75和停留时间为1.7s的实验条件下,总低碳烯烃收率最高可达44%,并且随剂油比的增加,总低碳烯烃收率有一个最大值。用最小二乘法对实验数据进行回归,得出了实验考察范围内乙烯、丙烯、丁烯和总低碳烯烃收率随剂油比的变化规律。实验结果还显示,催化剂对催化裂解起重要作用;不同类型的催化剂,不仅裂解产物的变化规律不同,其反应机理也会有很大区别。  相似文献   

3.
采用重油微反装置考察了大庆蜡油催化裂解反应的主要产物随反应温度的变化规律。试验结果表明 ,乙烯的收率随着反应温度的升高而单调增加 ;丙烯及丁烯的收率随着反应温度的升高呈现先增加后降低的趋势 ,分别存在一个最佳温度点 ,且丙烯收率的最佳温度高于丁烯的。根据试验结果推导了大庆蜡油催化裂解反应的动力学表达式 ,求取了不同反应温度下的催化裂解反应动力学速率常数、指前因子及反应活化能。  相似文献   

4.
张文昕 《科技信息》2009,(29):I0051-I0051
低分子烯烃在有机化工领域中应用非常广泛,由于乙烯、丙烯、丁烯是石油裂解中的主要产物,由乙烯、丙烯、丁烯通过低聚合成低分子烯烃是一个有效的途径,因此.本文以丙烯为原料,研究低聚反应的工艺条件及催化剂的制备对于其他低分子烯烃的合成,尤其是国内优势碳四资源的综合利用提供一定的借鉴和参考。  相似文献   

5.
大庆蜡油催化裂解反应动力学研究   总被引:2,自引:1,他引:2  
采用重油微反装置考察了蜡油催化裂解反应的主要产物随反应温度的变化规律。试验结果表明,乙烯的收率随着反应温度的升高而单调增加;丙烯及丁烯的收率随着反应温度的升高吾现先增加后降低的趋势,分别存在一个最佳温度点,且丙烯收率的最佳温度高于丁烯的。根据试验结果推导了大庆蜡油催化裂化裂解反应的动力学表达式,求取了不同反应温度下的催化裂化解反应动力学速率常数、指前因子及反应活化能。  相似文献   

6.
用流化催化裂化汽油生产低碳烯烃联产高辛烷值汽油可以在相对较温和的条件下进行。该方法可大幅度地提高丙烯、乙烯质量比,并在汽油烯烃含量降低的同时,提高汽油的辛烷值。以抚顺二厂流化催化裂化汽油为原料,在固定床微型反应装置上考察了反应条件和催化剂对反应的影响。结果表明,温度、油气与催化剂的接触时间及有无水蒸气参与都对乙烯、丙烯的生成有显著的影响。在适宜的反应条件下,使用适宜的催化剂能使乙烯加丙烯收率达到36%左右,并且H2+CH4+C2H6和焦炭的收率都很低。在烯烃含量降到10%左右时,汽油的研究法辛烷值和马达法辛烷值分别升高约5个百分点。  相似文献   

7.
《潍坊学院学报》2015,(6):24-27
将气相色谱法用于分析实验室煤油热裂解制丙烯实验中,建立了裂解产物中丙烯的定性及定量方法,实现了该实验教学中分析手段的绿色化改进。通过考察温度、水/油比及投料速度对丙烯产率的影响,结果表明在实验室条件下制备丙烯的最优化条件为:温度680℃,水/油比1,投料速度0.5mL/min,丙烯产率最高达26.06%。  相似文献   

8.
催化裂化过程中生产的混合碳4(简称为C4)中含有50%左右的丁烯,是很好的制乙烯和丙烯,尤其是丙烯的原料.在固定床反应装置上对C4裂解制乙烯和丙烯过程中LXH-Ⅰ型催化剂的性能进行了评价.结果表明,该催化剂具有较高的乙烯、丙烯选择性,反应中还可生成一部分含5个碳原子以上的烃.丁烯的转化率、乙烯和丙烯的收率在反应初期有所下降,随后分别稳定在58%,13%和40%左右.实验还表明,丁烯是先二聚然后裂解生成乙烯和丙烯的.  相似文献   

9.
从石油烃类制取已烯、两烯、丁烯等低碳烯烃,国际上普遍采用以天然气、石脑油等轻烃为原料的蒸汽裂解。蒸汽裂解为热反应,反应温度800℃。本发明改用石油重质组分原料和催化剂,使裂解温度降为540—580℃,并能在常压下进行,技术水平处于世界领先水平。  相似文献   

10.
利用流化催化裂化汽油生产低碳烯烃联产高辛烷值汽油   总被引:1,自引:0,他引:1  
用流化催化裂化汽油生产低碳烯烃联产高辛烷值汽油可以在相对较温和的条件下进行。该方法可大幅度地提高丙烯、乙烯质量比,并在汽油烯烃含量降低的同时,提高汽油的辛烷值。以抚顺二厂流化催化裂化汽油为原料,在固定床微型反应装置上考察了反应条件和催化剂对反应的影响。结果表明,温度、油气与催化剂的接触时间及有无水蒸气参与都对乙烯、丙烯的生成有显著的影响。在适宜的反应条件下,使用适宜的催化剂能使乙烯加丙烯收率达到36%左右,并且H2 CH4 C2H6和焦炭的收率都很低。在烯烃含量降到10%左右时,汽油的研究法辛烷值和马达法辛烷值分别升高约5个百分点。  相似文献   

11.
以不同金属改性的MCM-49分子筛为催化剂,纯1-丁烯为原料,考察了不同金属改性后的催化剂对烯烃裂解制丙烯、乙烯反应性能的影响.实验表明,硝酸镧、硝酸铈、硝酸锆以及硝酸银改性的催化剂可以在一定程度上抑制氢转移及芳构化副反应的发生,从而提高了目标产物丙烯和乙烯的选择性,其中硝酸锆改性的催化剂的稳定性最好.在优化的反应条件下,考察了反应时间对Zr-MCM-49分子筛催化剂催化性能的影响.  相似文献   

12.
催化裂化过程中生产的混合碳4(简称为C4)中含有50%左右的丁烯,是很好的制乙烯和丙烯,尤其是丙烯的原料。在固定床反应装置上对C4裂解制乙烯和丙烯过程中LXH—Ⅰ型催化剂的性能进行了评价。结果表明,该催化剂具有较高的乙烯、丙烯选择性,反应中还可生成一部分含5个碳原子以上的烃。丁烯的转化率、乙烯和丙烯的收率在反应初期有所下降,随后分别稳定在58%,13%和40%左右。实验还表明,丁烯是先二聚然后裂解生成乙烯和丙烯的。  相似文献   

13.
为了优化乙烯裂解原料并合理利用石脑油资源,将石脑油中的正构烷烃进行分离。不含正构烷烃的吸余油作为优质催化重整原料或高辛烷值清洁汽油的调和组分,正构烷烃质量百分数大于98.2%的脱附油作为乙烯裂解原料。在工业操作条件下,与石脑油原料相比,气体收率从85.8%提高到96.1%,乙烯收率从31.4%提高到47.2%,乙烯、丙稀和丁二烯三烯总收率从52.1%提高到65.9%。考察了不同正构烷烃含量的裂解原料对乙烯、丙烯和丁二烯收率的影响,得出乙烯、丙烯和丁二烯收率与原料中正构烷烃含量的关联式。提出了乙烯裂解与催化重整耦合的石脑油资源优化利用方案及以吸附分离脱附油和石脑油共同作为裂解原料的石脑油部分吸附分离加工方案。并对省略中间油切割步骤的吸附分离流程进行了探讨。  相似文献   

14.
车银平 《科技信息》2012,(31):84-84,87
1工艺路线与产品1.1 DMTO的工艺路线与产品DMTO(甲醇制烯烃)技术由中科院大连化学物理研究所开发,联合了洛阳设计院进行工程化的设计。该工艺反应类型为流化床反应。反应条件为:反应温度400-550℃,反应压力0.1-0.3MPa。工艺流程为:进料甲醇经加热达到350℃后进入MTO流化床反应器进行反应,生成C2-C5的烯烃混合物进入急冷塔冷却,烃类混合气体经分离工段分离出燃料气、乙烯、丙烯、丁烯、LPG及C5杂油;出口气体并入MTO反应气出口气中;催化剂部分引入再生器连续再生  相似文献   

15.
采用水热合成法制备了具有CHA骨架结构的SAPO-34和MeAPSO-34(Me=Ni、Zn、Fe、Cu和Ni-Zn)分子筛。以甲醇裂解制取低碳烯烃(MTO)为模型反应,采用固定床反应装置,对所制备的分子筛进行了催化性能评价。结果表明,所制备的MeAPSO-34分子筛具有比SAPO-34分子筛更高的乙烯选择性和乙烯与丙烯总选择性,且Ni-Zn双金属改性比单金属改性更有利于乙烯与丙烯总选择性的提高,但金属离子的添加会导致丙烯选择性的降低。与SAPO-34相比,单金属Ni的加入可使乙烯的选择性增加7.7%(由SAPO-34的40.7%增加至NiAPSO-34的48.4%),乙烯与丙烯总选择性增加2.5%;而双金属Ni-Zn的加入可使乙烯的选择性增加6.5%,乙烯与丙烯总选择性增加3.2%。  相似文献   

16.
以HZSM-5分子筛为催化剂,在固定床反应器上进行抽余C5催化裂解制备乙烯/丙烯实验.考察了不同硅铝摩尔比的HZSM-5催化裂解抽余C5制备乙烯/丙烯的反应性能;用H3PO4浸渍法对HZSM-5进行改性,考察P改性对抽余C5催化裂解性能的影响,并采用X射线荧光光谱(XRF)、X射线衍射(XRD)、扫描电镜(SEM)、氨程序升温脱附(NH3-TPD)等手段对其进行表征.结果表明,硅铝摩尔比为50的HZSM-5具有较好的催化裂解抽余C5制乙烯/丙烯反应性能,该催化剂最适宜的工艺条件是0.1 MPa、550℃、液体质量空速为3 h-1、水/油(抽余C5)体积比为0.8;未改性HZSM-5(硅铝摩尔比为50)在最佳工艺条件下反应3 h,所得乙烯和丙烯总收率为43.43%,而P改性后的HZSM-5在相同条件下反应,乙烯和丙烯总收率可达47.30%,提高了3.87%;P改性不会破坏HZSM-5分子筛的骨架结构,可调节分子筛的酸性,改善HZSM-5分子筛的催化裂解性能.  相似文献   

17.
采用气相转移法(Q)、原位合成法(Y)和涂覆法(Z),制备出了3个系列的不同SAPO-34含量的SAPO-34/堇青石整体式催化剂。采用XRD和N2吸脱附等分析测试技术表征了催化剂的结构,在固定床反应器上评价了整体式催化剂的甲醇制烯烃反应性能。结果表明:3个系列的SAPO-34/堇青石整体式催化剂堇青石表面SAPO-34分子筛的基本骨架没有发生大的改变,气相转移法制备的催化剂具有相对较大的比表面积,原位合成法制备的催化剂具有相对稍大的孔径。在催化剂的SAPO-34含量相近的情况下,气相转移法制备的催化剂具有最好的催化性能;以(Q)19.7%SAPO-34/堇青石整体式催化剂为例,在反应温度380~420℃、空速520~810mL/(g·h)的条件下有利于低碳烯烃的生成。在400℃和670mL/(g·h)的反应条件下,低碳烯烃的选择性最高,乙烯和丙烯的选择性分别可达到40.91%和32.80%,乙烯和丙烯的总选择性能达到73.71%。  相似文献   

18.
催化裂化条件下的甲醇转化反应过程   总被引:2,自引:0,他引:2  
在对甲醇作为催化裂化部分进料可行性分析的基础上,开展了催化裂化条件下甲醇转化反应过程的研究。采用小型固定流化床装置,利用工业用催化裂化的GOR-II催化剂,考察了反应温度、剂醇比、空速、甲醇进料浓度、催化剂积炭等反应条件对甲醇转化率及低碳烯烃收率的影响规律。在反应温度500℃、剂醇质量比16、空速0.9 h-1、w=0.4的甲醇水溶液进料和催化剂无积炭的条件下,低碳烯烃产率为19.78%,选择性为59.55%。结果表明:甲醇作为催化裂化过程部分进料可获得较高的低碳烯烃产率。  相似文献   

19.
ZSM-5分子筛是一种孔道结构独特的硅铝酸盐晶体材料,在改善催化裂化汽油质量和提高乙烯、丙烯等低碳烯烃收率方面有重要应用。利用水热合成方法制备出亚微米级ZSM-5分子筛,并研究了水热合成条件对亚微米级ZSM-5分子筛结构特征和物化性能的影响。结果表明:在模板剂用量为25%、晶化温度为185℃、晶化时间为48 h、合成体系碱度为0.10~0.12、原料硅铝比为100的条件下,可以获得结晶度较高、晶体形貌规整、孔结构性质良好的亚微米级ZSM-5分子筛。  相似文献   

20.
研制了一系列负载型钛系高效催化剂:GZ、ZS、ZE、YJ、CP、STP、SN、HE型等8类,成功地用于乙烯、丙烯、丁烯-1、苯乙烯均聚合,以及乙烯和α-烯烃之间的共聚合反应。研究了催化剂组份、聚合条件、共聚单体配比等对催化活性及多种烯烃聚合反应的影响,聚合反应动力学;并测定了催化剂活性中心浓度及动力学参数等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号