首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
以空气横掠水平壁面上的液滴作为研究对象,确定液滴脱离时的界面形状,给出沿接触线周边接触角的变化关系,在滞后张力模型的基础上,从力平衡出发建立脱落直径的联立方程,讨论液滴脱离直径与来流速度的关系.随来流速度增加,液滴所受表面力和风力均增加,低来流速度下,表面力起主要控制作用,随来流速度增加,风力比表面力增加得快,导致液滴半径越小,被风吹离所需的临界风速越大.液滴脱离的临界风速还与液滴距平板前缘L的距离有关,表现为L越大,液滴被吹离所需的临界风速越大,且液滴半径越大,L影响越显著.  相似文献   

2.
针对水冷塔石蜡造粒工艺中石蜡颗粒表面脱水,提出用气流剪切脱除颗粒表面残留水的方法,设计了气流剪切脱水的设备结构,并实验验证了该过程脱水的有效性。分析了颗粒表面的脱水过程,由于水滴在石蜡表面不润湿,在表面张力作用下,以球帽型液滴形式存在,在气流的剪切作用下,水滴从石蜡表面脱离。实验结果表明,在3.5m/s气速下,10s的停留时间就能实现石蜡颗粒表面完全脱水,脱水速率与颗粒表面相对气速有关,随操作气速增大,脱水速率加快。剪切脱水过程中的流化空气不需要加热,能耗低。  相似文献   

3.
Technological applications of liquid crystals have generally relied on control of molecular orientation at a surface or an interface. Such control has been achieved through topography, chemistry and the adsorption of monolayers or surfactants. The role of the substrate or interface has been to impart order over visible length scales and to confine the liquid crystal in a device. Here, we report results from a computational study of a liquid-crystal-based system in which the opposite is true: the liquid crystal is used to impart order on the interfacial arrangement of a surfactant. Recent experiments on macroscopic interfaces have hinted that an interfacial coupling between bulk liquid crystal and surfactant can lead to a two-dimensional phase separation of the surfactant at the interface, but have not had the resolution to measure the structure of the resulting phases. To enhance that coupling, we consider the limit of nanodroplets, the interfaces of which are decorated with surfactant molecules that promote local perpendicular orientation of mesogens within the droplet. In the absence of surfactant, mesogens at the interface are all parallel to that interface. As the droplet is cooled, the mesogens undergo a transition from a disordered (isotropic) to an ordered (nematic or smectic) liquid-crystal phase. As this happens, mesogens within the droplet cause a transition of the surfactant at the interface, which forms new ordered nanophases with morphologies dependent on surfactant concentration. Such nanophases are reminiscent of those encountered in block copolymers, and include circular, striped and worm-like patterns.  相似文献   

4.
针对钢液中液态夹杂与固态夹杂碰撞聚合的现象,采用水模型实验模拟了液态夹杂去除固态夹杂的行为.实验结果表明:其与液滴去除夹杂的机理类似,流体内液滴与固粒的碰撞存在3种形式:惯性碰撞、截留捕获和尾流捕获.通过理论公式计算了单独的惯性碰撞捕获效率及同时考虑惯性碰撞和截留的捕获效率,发现二者的趋势基本一致,尤其当液滴直径较大时,二者曲线大致重合,因此,可以得出惯性捕获占据主导地位的结论.这与实验中观察到的液滴与固粒聚合大多数都是惯性碰撞相吻合.对实验数据进行了分析计算,得到了实验中液滴捕获固粒的捕获效率,发现所得曲线与理论计算捕获效率值相比,有一定差异,但是趋势基本一致.这是因为湍动程度较低,不同直径的捕获效率相对较为均匀,没有理论计算曲线那样陡峭.  相似文献   

5.
根据表面热力学原理,本文导出从无孔固体吸附氮气的等温线计算其表面上吸附生成的液氮膜界面张力方程式;还导出计算固体中圆筒形间隙孔径方程式。计算结果表明:在77.3K,绝大多数无孔固体表面上吸附液氮膜的界面张力与液氮的界面张力相差很大;本文方法计算出固体中圆筒形间隙孔径比用Kelvin公式计算结果大。  相似文献   

6.
采用有限元方法模拟高频调幅交变电磁场以及液滴内流体流动, 金属液滴自由界面的追踪采用任意拉格朗日欧拉(arbitrary Lagrange-Euler, ALE)方法. 数值模拟得到了高频调幅交变电磁场、金属液滴内部液体流动和液滴表面形变的动态行为. 数值结果表明: 在高频调幅交变电磁场中, 金属液滴所受洛伦兹力集中在液滴内部近表面区域, 液滴受近似表面力的洛伦兹力激励; 在表面张力和重力的共同作用下呈周期性振荡, 液滴的振荡幅度起伏变化, 具备参数振荡特征. 对液滴振荡的频谱分析结果显示, 液滴振荡的主频和高频调幅交变电磁场的调制波频率相同, 在其倍频处也会出现较大峰值, 液滴振荡的频谱特征与高频调幅交变电磁场中金属液滴所受洛伦兹力的频率特性吻合.  相似文献   

7.
接触角测试的量高法的适用范围   总被引:2,自引:2,他引:0  
李健 《科学技术与工程》2013,13(16):4486-4490
量高法是接触角测试的一种简便的测试方法,在工程和研究中得到广泛应用。该方法基于液滴的球形假设,决定其仅有有限的适用范围。通过数值模拟的方法研究量高法所引起的接触角偏差,从而考察量高法的适用范围并给出接触角修正的方法。研究发现:采用量高法计算的接触角与真实接触角有很大的偏差,这种偏差在超疏水表面上的接触角测量中尤为明显,可达20°;偏差范围决定于液滴的性质、表面的润湿性能和液滴的体积,液体表面张力小、接触角大和液滴体积大将导致大的偏差。在超疏水或超疏油表面研究中,为精确表征表面的润湿性能,需要对量高法进行偏差修正,提出了一种用于偏差修正的方法,通过该方法可精确确定出真实接触角。  相似文献   

8.
采用射流界面不稳定扰动波雾化分裂理论,分析了单液滴在空气中以极高的速度运动过程中,由于液滴所受内外作用力的不平衡边界条件所产生的表面扰动;建立了液滴二次破碎色散方程,给出了单液滴在扰动波作用下发生二次破碎的最快增长率和相应的最不稳定波长,以及破碎时间和稳定液滴直径;分析了液体粘性、液滴速度对高速运动液滴不稳定性的影响,对液滴雾化机理进行了理论探讨.仿真表明:由作用于高速运动液滴表面的不平衡力,使得液滴界面产生变形加速度,这是导致液滴表面不稳定而进一步分裂的内在动因;粘性对扰动波发展有抑制作用,气液界面运动加速度是控制液滴破碎的重要因素.  相似文献   

9.
稀释法求微乳液体系的结构参数   总被引:25,自引:0,他引:25  
本文用简便、准确的稀稀法求得了SDS-醇-正庚烷-水组成的W/O型微乳液的结构参数:水内核半径Rw、颗粒有效半径Re、界面层厚度1、平均聚集数n、颗粒总数Nd以及分散相所占总界面积Ad。还求出不同水量和不同醇时,醇从连续相转移到界面层的自由能变化△c→i^0。发现△Gc→i^0。发现△c→i^0、颗粒半径Rw与醇的碳子数n具有线性关系。同时发现Rw与含水量VH2O近似呈线性关系。  相似文献   

10.
采用VOF方法来追踪钢渣两相界面,磁流体力学模块(MHD)来加载电流、电压对电渣重熔过程中熔滴滴落行为进行数值模拟.结果表明:电渣重熔过程中自耗电极端部熔滴的数目随着充填比的增加而增多;熔滴的尺寸随着自耗电极端部形状和界面张力的增加而增大.然而,熔滴的尺寸和数量随着输入电流的增大而减小.而且一些尺寸较大的熔滴在滴落的过程中受到了电磁力、重力以及浮力等力作用被分裂成几个尺寸较小的熔滴.从自耗电极端部滴落的熔滴不具有对称性,从而导致了渣池的流场不对称性.  相似文献   

11.
为研究水平管外液体和气体相互作用下的两相流动特性,选择蒸发器中广泛应用的转角正方形排列管束为物理模型,采用流体体积函数(VOF)方法追踪气液界面,提出液体在管间以液滴形式存在的模型假设,结合管间空隙率数据来初始化水平管外液膜厚度和液滴直径,模拟蒸汽在管外液膜和管间液滴作用下的流动过程,分析气液两相的压力场和速度场.结果表明:小喷淋密度下,进出口压降计算值和实验吻合良好;在计算域内,下部区域压力值高于上部区域,且最小压力分布在液滴附近的右下侧区域;压力分布的不均会造成液滴在下落过程中的变形.  相似文献   

12.
The characterization of reactive solid-liquid interfacial energies and solid surface energies is a pressing problem in materials science and surface science. Based on the concept that unbalanced forces doing work, a mathematical formulation between surface energies and interfacial energies for reactive wetting is presented. The resulting formalism has significant generality in which the equilibrium Young’s equation for solid-liquid interfacial energies is just a special case. It is shown that a solid-liquid interfacial energy at non-equilibrium is always higher than that at equilibrium, and that the transformation of reactive interfaces to equilib-rium interfaces is an inevitable, spontaneous process. The numerical range of solid-liquid interfacial energies γsl for a limited, solid-liquid interfacial wetting system was calculated to be 0 ≤γsl ≤γsg. The calculation methods for reactive solid-liquid interfacial energies and solid surface energies are presented. They are significant for composite materials and weld, powder sinter, package of electronic devices, and other surface and interfacial issues in metallurgy.  相似文献   

13.
The metastable liquid phase separation occurs in the ternary Cu50Fe37.5Co12.5 peritectic alloy droplets during free fall. The separated alloy melt rapidly solidifies and evolves core-shell microstructure composed of L1(Cu) and L2(Fe,Co) phases. Based on the determination of the phase transition temperature, the core-shell microstructure evolution, the interfacial energy, the temperature gradient and the Marangoni migration are analyzed. The interfacial energy of the separated liquid phase increases with the decrease of the temperature. The temperature gradient changes from large to small along the radius direction from inside to outside in the alloy droplet. The Marangoni force (F M) acting on the micro-droplet of L2(Fe,Co) phase increases with the increase of the size of the L2(Fe,Co) phase, and decreases with the increase of undercooling. Driven by F M, the micro-droplet of L2(Fe,Co) phase migrates from outside to inside in the alloy droplet, collides and coagulates each other during migration, and then forms different types of core-shell microstructures. Supported by the National Natural Science Foundation of China (Grant Nos. 50121101, 50395105) and NPU Youth Scientific and Technological Innovation Foundation (Grant No. W016223)  相似文献   

14.
Liquid marbles.   总被引:5,自引:0,他引:5  
P Aussillous  D Quéré 《Nature》2001,411(6840):924-927
The transport of a small amount of liquid on a solid is not a simple process, owing to the nature of the contact between the two phases. Setting a liquid droplet in motion requires non-negligible forces (because the contact-angle hysteresis generates a force opposing the motion), and often results in the deposition of liquid behind the drop. Different methods of levitation-electrostatic, electromagnetic, acoustic, or even simpler aerodynamic techniques-have been proposed to avoid this wetting problem, but all have proved to be rather cumbersome. Here we propose a simple alternative, which consists of encapsulating an aqueous liquid droplet with a hydrophobic powder. The resulting 'liquid marbles' are found to behave like a soft solid, and show dramatically reduced adhesion to a solid surface. As a result, motion can be generated using gravitational, electrical and magnetic fields. Moreover, because the viscous friction associated with motion is very small, we can achieve quick displacements of the droplets without any leaks. All of these features are of potential benefit in microfluidic applications, and also permit the study of a drop in a non-wetting situation-an issue of renewed interest following the recent achievement of super-hydrophobic substrates.  相似文献   

15.
双流体喷嘴荷电雾化特性   总被引:12,自引:0,他引:12  
针对压力雾化难以雾化高粘度液体的问题,设计了双流体喷嘴,利用气体动能提高雾化效果.以空气、水为介质,对双流体喷嘴进行了试验研究,测量得出了各控制参数间的互相牵制关系,发现了气液流量之间的一般规律.改变气液压力可以有效改变喷量与雾滴粒径以满足不同雾化要求,雾化片孔径的大小对雾化特性的影响很大.电极电压增大,荷质比随之增加,并从理论上进行探索,分析得出了当荷电雾滴荷质比达到分裂极限时,雾滴将进一步破碎雾化.试验表明,该喷嘴具有气耗低,喷量调节范围宽的特点,对高低粘度液体均能有效雾化,荷上静电以后,液滴粒径更加细小、均匀.  相似文献   

16.
应用界面双层模型和界面固有化学势的概念 ,对菌紫质人工膜系统C(N)端界面受光激发所引起的界面自由能变化进行了初步的探讨 ,导出了bR相、C或N端界面能的一般表达式 ,及三类具体的菌紫质人工膜系统 (液 bR 液 ,固 bR 固 ,液 bR 固 )界面自由能的表达式 .可以看出 ,光照下的bR人工膜系统界面自由能的变化 ,不仅与物质组分相关 ,还与跨膜电势相联系 .据此 ,在一定范围内提高bR膜系统溶液的温度、pH值 ,以及降低跨膜电压 ,都将减少界面自由能 ,从而对系统的光驱质子泵过程产生影响 .本文研究仅局限于光照的影响 ,暂不涉及体系相结构变化的情形 .  相似文献   

17.
 为提高凝析气井井筒积液状态判断的准确率,通过对凝析气藏气液界面张力和气井携液常规模型的分析,研究了考虑实际界面张力的气井临界携液流量计算方法。根据气井井筒的温度及压力计算出实际界面张力,通过引入实际界面张力对常规模型进行修正,得到考虑实际界面张力的气井临界携液流量计算模型;在实际计算时将产油气井和油水同产气井区分对待,产油气井以油气界面张力计算,油水同产气井以气水界面张力计算。应用修正的3 种常规模型分别对新疆某凝析气田20 口气井的临界携液流量进行计算比较,表明修正Turner 模型计算结果对井筒积液判断的准确率达到90%,可作为该区域气井积液的判断标准。  相似文献   

18.
平流式沉淀池水流三维CFD模拟   总被引:4,自引:0,他引:4  
建立了平流式沉淀池水流的三维两相流模型,在动量方程中考虑了相间界面力的作用,以及悬浮物体积分数和两相间密度差的影响;应用计算流体力学软件STAR-CD对模型进行求解.结果表明,沉淀池内宽度方向速度分布是非均匀的;进水口下方和污泥斗上方存在回流区;进水区水流湍动能较大,而沉淀区内很小;同时比较了出水口处是否设置挡板以及挡板深度对流场的影响.以Imam的实验结果进行验证,流场模拟值与实验值吻合很好.  相似文献   

19.
表面材料性质对生物垢形成过程的影响   总被引:3,自引:0,他引:3  
为找到表面材料性质与生物垢形成难易程度之间的关联因素,以设计出能控制生物垢形成速率的新表面材料,对水系统中荧光假单胞菌在17种表面材料上形成生物垢的动态过程进行了实验研究,获得了生物的生长曲线,并将生长曲线划分为诱导期和生物垢快速生长期。发现表面材料不同,形成生物垢的诱导期及生物垢量也不尽相同。还对9种表面材料的表面能和界面能进行了实验测定及相关计算。结果表明,只有固体材料与生物垢之间的固-固界面能与生物垢形成之间有明确的关系,而未发现材料的表面能和固体材料与液体水之间的固液界面能与生物垢形成的诱导期或生物垢量之间有任何明确的关系。  相似文献   

20.
目前,关于纤维表面水滴聚结与脱落过程的研究多为定性分析,缺乏相关实验数据,并且各种因素对纤维聚结脱水效果的影响并不清晰。针对以上问题,搭建了一套可视化微流道实验系统;在航空煤油-水体系中加入表面活性剂石油磺酸盐,制备了两种不同界面张力的乳状液;利用建立的实验系统观测在不同界面张力下纤维表面水滴的聚结与脱落过程,并讨论了影响水滴聚结与脱落的主要因素。结果表明:在18 mN/m的界面张力下,最大水滴粒径在前3 min增长较快,在3 min后增长较为缓慢;在8 mN/m的界面张力下,在前6 min最大水滴粒径的增长趋势较为平缓,6 min后最大水滴粒径几乎不再增长,并且在聚结初始阶段水滴呈单侧分布;水滴单位面积的表面活性剂分子数存在饱和值,当达到饱和值时,水滴被表面活性剂分子完全包围,很难与其他水滴发生聚结行为;在18 mN/m的界面张力下,流场流速是引起水滴断裂脱落的主要原因;在8 mN/m的界面张力下,水滴的断裂脱落不仅受流场流速的影响,而且还与表面活性剂的含量有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号