首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
本文主要介绍环氧大豆油丙烯酸酯近年来的合成研究进展,以及在UV固化涂料、泡沫材料、复合材料等方面的应用和发展情况,并对其应用前景和发展方向进行了展望。  相似文献   

2.
本文研究了以强酸性阳离子交换树脂为催化剂原地大豆油的环氧化,考察了原料配比、反应温度、催化剂用量对环氧化反应的影响以及催化剂的使用寿命。找出了适宜的工艺条件,制得的产品质量优于我国标准,并且主要质量指标达到或超过国外同类产品。  相似文献   

3.
紫外光固化环氧大豆油树脂的合成和表征   总被引:2,自引:0,他引:2  
研究了可作为紫外光固化涂料和油墨等产品的基体树脂的改性环氧大豆油树脂的合成及表征.利用环氧大豆油的环氧环的化学活性,先后与丙烯酸和马来酸酐进行反应,分别合成了油溶性环氧大豆油丙烯酸酯(AESO)和水溶性的马来酸改性环氧大豆油树脂(MAESO).并用红外和核磁对两种产物的结构进行了表征.添加紫外光引发剂后,两种产物在紫外光照射下均可快速固化.合成AESO最佳条件为环氧大豆油:丙烯酸=1.2:1(摩尔比),催化剂三苯基膦的用量为总质量的1%,反应温度为120℃;合成MAESO最佳条件为AESO:马来酸酐=4:1(摩尔比),催化剂钛酸正丁酯用量为1%,反应温度90℃.  相似文献   

4.
以环氧大豆油(ESO)为原料,丙烯酸为开环试剂,在催化剂三苯基膦的作用下以不同配比的环氧大豆油和丙烯酸合成一系列环氧大豆油丙烯酸酯(AESO)低聚物,并在紫外光照射下固化成膜.采用傅里叶红外光谱(FT-IR)对环氧大豆油丙烯酸酯低聚物进行结构表征.利用热重分析(TGA)对环氧大豆油丙烯酸酯的热性能进行测试,结果显示丙烯酸含量的提高会导致固化膜热分解温度降低.通过拉力测试研究不同配比固化膜的拉伸性能的变化,发现丙烯酸含量的变化,对固化膜拉伸性能影响显著.通过铅笔硬度、涂膜附着力及冲击强度测试研究了固化膜的其他力学性能,结果表明,随着丙烯酸含量的增加,固化膜相应的力学性能都明显提高.  相似文献   

5.
以可再生资源的大豆油衍生物环氧大豆油(ESO)为基体,可以制备环氧大豆油丙烯酸酯(AESO),但该低聚物所成UV固化膜附着力不佳,力学性能较差.文中利用环氧树脂优良的粘接性能和力学性能来改善纯环氧大豆油丙烯酸酯固化膜的这些不足.首先将环氧大豆油和环氧树脂混合,利用丙烯酸对环氧基接枝制备了环氧大豆油/环氧树脂丙烯酸酯(AESO-EA)低聚物,进一步在光引发剂Doracur1173的引发下共聚得到环氧大豆油丙烯酸酯/环氧树脂丙烯酸酯UV固化膜.通过拉伸性能测试、铅笔硬度测试、附着力和冲击性能的测试对固化膜进行了性能分析.测试结果表明,引入了环氧树脂后的固化膜性能显著提高.通过比较分析,当环氧树脂E-44的添加量为环氧大豆油质量的6%左右时,UV固化膜整体性能最佳.  相似文献   

6.
聚氯乙烯中环氧大豆油的迁移   总被引:1,自引:0,他引:1  
测定了时间、温度、接触介质等对增塑聚氯乙烯(PVC)中环氧大豆油(ESO)迁移的影响,并拟合计算得到120℃下增塑剂的迁移扩散系数。结果表明,ESO在低温迁移过程中出现"诱导期","迁移诱导期"随温度升高而缩短。在40℃时,ESO的整个迁移过程处于"诱导期",在96h内未测出质量损失;在80℃时,"迁移诱导期"小于6h;在120℃时,ESO向活性碳和PVC粉末等介质的迁移则没有观察到"迁移诱导期"。通过对迁移扩散系数的拟合发现,在120℃下ESO向PVC粉末以外的其他介质的迁移符合费克定律。此外,在偏苯三酸三辛酯(TOTM)中加入ESO可以降低增塑剂的迁移量。  相似文献   

7.
论述了不饱和酚醛树脂的合成。探讨了会成工艺、配方、合成条件等对树脂合成的影响。通过红外光谱分析了树脂的结构。  相似文献   

8.
通过悬浮聚合的方法,将苯乙烯与甲基丙烯酸缩水甘油酯共聚,制备了一种新型的环氧类扩链剂.通过红外光谱法确定了产品的分子结构,热分析结果表明苯乙烯-甲基丙烯酸缩水甘油酯具有较好的热稳定性.环氧当量测定及粘度测定结果表明新型环氧类扩链剂应用性能与巴斯夫公司市售的环氧类扩链剂4360S以及4370S基本相同,但在经济性方面明显优于以上两种产品,表明所制备的环氧类扩链剂具有良好的市场前景及市场竞争力.  相似文献   

9.
介绍丙烯酸化环氧大豆油在泡沫塑料、涂料、胶黏剂及复合材料等方向上的研究进展,并对其应用前景进行展望。  相似文献   

10.
对钼改性酚醛树脂的合成进行了研究,讨论了各因素对合成工艺的影响,确定了最佳工艺参数。制备的钼酚醛树脂热分解温度为522℃,600℃下失重率仅为17.5%,其它性能达到普通酚醛树脂的标准。  相似文献   

11.
硼、烷基酚双改性酚醛树脂的合成及耐热性分析   总被引:2,自引:0,他引:2  
为提高树脂耐热性,通过正交实验讨论了硼、烷基酚双改性酚醛树脂的合成方法。对树脂的热重分析结果表明:此树脂的耐热性优于普通的酚醛树脂。最后还确定了较好的改性剂加入量。  相似文献   

12.
对近年来酚醛型离子交换/螯合树脂的合成与应用研究进行了综合评述,并对今后该领域的研究提出了展望.  相似文献   

13.
三聚氰胺和腰果壳油改性酚醛树脂的研究   总被引:3,自引:0,他引:3  
利用腰果壳油和三聚氰胺对酚醛树脂进行改性,提出了最佳合成工艺.对改性后的酚醛树脂进行软化点和凝胶时间测定发现,软化点较未改性的酚醛树脂明显提高,凝胶时间较未改性的酚醛树脂明显降低.利用红外光谱对改性的产品进行了分析,结果表明需要的新的官能团已经接在酚醛树脂分子上.  相似文献   

14.
以丙烯酸和环氧大豆油(ESO)为原料合成了大豆油丙烯酸酯(AESO).通过红外光谱、示差扫描量热法、热重分析、力学性能测试及硬度测试,研究三乙烯四胺作为固化剂时大豆油丙烯酸酯改性双酚A环氧树脂(DGEBA)的热学性能、力学性能以及硬度. 结果表明:三乙烯四胺固化大豆油丙烯酸酯的焓变(∆H =28.63 J/g)远小于三乙烯四胺固化双酚A环氧树脂的焓变(∆H=428.25 J/g);随着混合体系中大豆油丙烯酸酯质量分数的增加,焓变、玻璃化转变温度(Tg)、拉伸强度、拉伸模量以及硬度都会减小,峰值固化温度(Tp)、冲击强度、断裂伸长率会逐渐增加,改性的双酚A型环氧树脂逐渐变为韧性断裂,证明大豆油丙烯酸酯对双酚A环氧树脂有优良的增韧作用.  相似文献   

15.
以乙二醇苯醚和甲醛为原料,经缩聚反应,先得到乙二醇苯醚一甲醛树脂(FQ),再分别与苯磺酰氯、巯基乙醇反应,得到含硫、氧酚醛型螯合树脂.测定了该树脂对重金属离子Cu^2 、Pb^2 、Ni^2 、Zn^2 、Ag^ 、Hg^2 的吸附容量,研究了该树脂的吸附动力学及pH值对静态吸附性能的影响.结果表明:该树脂对Ag^ 、Hg^2 、Cu^2 、Ni^2 、Zn^2 、Pb^2 的吸附容量分别为1.04、0.85、0.73、0.59、0.39、0.17mmol/g。  相似文献   

16.
不同硼含量硼改性酚醛树脂的合成及其性能   总被引:4,自引:0,他引:4  
采用特定的合成工艺合成了不同硼含量的改性酚醛树脂,并利用傅里叶红外光谱、热重分析和冲击试验等方法对其性能进行了分析.结果表明:合成出了不同硼含量的改性酚醛树脂,通过红外吸收峰对比法和计算法对比确定了硼含量,合成的硼改性酚醛树脂硼的最高质量分数可达9.0%;硼改性酚醛树脂的耐热性随硼含量的增加而提高,高硼含量的样品在1200℃时的失重率仅为34.7%,残炭率高达65.3%;硼的引入提高了酚醛树脂的韧性.随着硼含量的增加,改性酚醛树脂的冲击韧性提高,但当硼质量分数过高时(9.0%),其冲击韧性有所下降.  相似文献   

17.
纳米铜对酚醛树脂及摩擦材料性能的影响   总被引:1,自引:0,他引:1  
采用原位同生法成功地制备了纳米铜改性酚醛树脂.利用X射线衍射分析和透射电子显微镜对所制备的树脂进行了表征,结果显示酚醛树脂中的纳米铜粒子分散良好,粒径为10~40nm.通过热重分析、冲击试验和摩擦试验,分别研究了纳米铜对酚醛树脂及摩擦材料性能的影响,结果表明:随纳米铜含量的增加,酚醛树脂的初始分解温度和半分解温度先升高后降低,在其质量分数为7%时分别达到最大值;随纳米铜含量的增加,摩擦材料的冲击强度先增大后下降,在其质量分数为5%时达到最大值;纳米铜可改善摩擦材料的摩擦磨损性能,尤其在高温下可使摩擦材料的热衰退明显减轻,磨损率显著下降.  相似文献   

18.
合成了新型大孔schiff碱螯合树脂聚-N-(3-甲氧基水杨叉基)乙烯基苯胺(poly-N-(3-me-thyloxysalicylidene)Viny laniline,以下简称为PMSVA).探讨了母体结构,试剂质量此等合成条件对制得的树脂吸附容量的影响.在pH=2.5~5.0范围内PMSVA树脂对Cu(Ⅱ)具有较大的吸附容量和良好的吸附选择性,将其应用于光亮镀镍溶液中微量铜的除去,以及废水中微量铜(Cu~(2+)的回收,效果良好.  相似文献   

19.
硼酚醛/桐油/纳米SiO2杂化材料的制备及其红外表征   总被引:1,自引:0,他引:1  
利用原位法制备了硼酚醛/桐油/纳米SiO2杂化材料,并用红外光谱进行结构表征,通过分析谱图中羰基、硅氧键、双键等的变化,研究了反应条件及投料比对杂化材料结构的影响。结果表明硼酚醛/桐油/纳米SiO2杂化材料具有优异的对热稳定性,能获得较高的碳的残留率,且具有良好的柔韧性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号