共查询到13条相似文献,搜索用时 62 毫秒
1.
当窄带外辐射源数目稀少且空间分布不均匀时,通常会在无源雷达成像中产生稀疏的无规则空间谱填充,使得传统快速逆傅里叶方法(inverse fast Fourier transform, IFFT)或极坐标方法难以获得良好的目标成像效果。针对这种空间谱填充的稀疏性和非均匀性,利用压缩感知理论在处理稀疏随机采样信号重构问题上的优势,提出了稀疏无源雷达成像方法。同时通过构造传感矩阵的互相关和积累相关函数,对目标图像的可重构性进行了分析。理论分析和仿真结果表明,对具有稀疏随机空间谱特点的无源雷达成像,本文提出的成像方法是有效的。 相似文献
2.
将压缩感知理论与条带随机噪声雷达相结合,在假设场景目标稀疏的前提下,通过构造随机噪声的不同时延矩阵为稀疏变换矩阵以及通过构造随机噪声与部分单位阵的乘积为观测矩阵,提出了一种基于压缩感知的条带随机噪声雷达稀疏成像方法。该方法能在大幅减少回波信号采样数据量的前提下,准确重建出原始场景目标高分辨像。仿真结果证明了该方法的有效性与鲁棒性。 相似文献
3.
基于贝叶斯压缩感知的SAR目标识别 总被引:1,自引:0,他引:1
针对合成孔径雷达(synthetic aperture radar, SAR)目标识别问题,提出一种基于贝叶斯压缩感知(Bayesian compressive sensing, BCS)的图像域SAR目标识别方法。该方法首先对SAR图像进行分割预处理,得到目标区图像数据;然后基于BCS模型,根据训练样本构造传感矩阵;求解测试样本相应的稀疏系数矢量,根据稀疏系数矢量中对应训练样本类别元素的L2范数判定目标类型。采用美国运动和静止目标获取与识别(moving and stationary target acquisition and recognition, MSTAR)计划公开发布的SAR目标数据库进行实验,结果表明该方法具有良好的识别效果。 相似文献
4.
为降低合成孔径雷达(synthetic aperture radar, SAR)成像系统的数据量并提高其平台适应性,提出了一种基于频域近似观测算子的机动平台大斜视压缩感知SAR成像方法。在构建近似观测算子的过程中,首先,基于等斜视角曲线构建了一种能够精确描述地面散射点成像参数空变性的斜距模型。然后,引入距离走动校正函数和高阶时域扰动因子实现了距离方位的解耦和空变距离徙动的校正,并通过构建时频域的相位滤波因子校正了方位压缩参数的空变性。最后,采用复近似信息传递(complex approximation message passing, CAMP)算法对稀疏和非稀疏场景进行快速、高精度重建。该方法通过校正成像参数的空变性,提高了近似观测算子的精度,实现了扩展场景的机动平台大斜视压缩感知SAR成像,仿真结果支撑了理论分析并验证了所提方法的有效性。 相似文献
5.
为降低合成孔径雷达(synthetic aperture radar, SAR)成像系统的数据量并提高其平台适应性,提出了一种基于频域近似观测算子的机动平台大斜视压缩感知SAR成像方法。在构建近似观测算子的过程中,首先,基于等斜视角曲线构建了一种能够精确描述地面散射点成像参数空变性的斜距模型。然后,引入距离走动校正函数和高阶时域扰动因子实现了距离方位的解耦和空变距离徙动的校正,并通过构建时频域的相位滤波因子校正了方位压缩参数的空变性。最后,采用复近似信息传递(complex approximation message passing, CAMP)算法对稀疏和非稀疏场景进行快速、高精度重建。该方法通过校正成像参数的空变性,提高了近似观测算子的精度,实现了扩展场景的机动平台大斜视压缩感知SAR成像,仿真结果支撑了理论分析并验证了所提方法的有效性。 相似文献
6.
传统的基于组稀疏表示(group sparse representation, GSR)的压缩感知(compressd sensing, CS)重构算法利用信号的稀疏性和非局部相似性来重构图像信号,但没有充分考虑图像的局部平滑特性,影响了算法的重构性能。考虑信号的稀疏性、非局部相似性、平滑性3种先验信息,提出一种基于GSR和加权全变分(weighted total variation, WTV)的图像CS重构算法,并针对传统的WTV采用全局加权会引入错误的纹理以及边缘状伪影的问题,利用一种新的WTV策略,只对图像的高频分量设置权重来保证图像重构质量。此外,针对硬阈值迭代法忽略低频的主分量系数,采用硬阈值-模平方方法来更好地保护非主分量系数。实验表明,相同采样率下,所提算法的峰值信噪比比非局部正则化全变分和基于GSR的CS算法平均分别提高5.4 dB和0.62 dB,验证了所提算法有效保护图像的细节信息。 相似文献
7.
传统的基于组稀疏表示(group sparse representation, GSR)的压缩感知(compressd sensing, CS)重构算法利用信号的稀疏性和非局部相似性来重构图像信号,但没有充分考虑图像的局部平滑特性,影响了算法的重构性能。考虑信号的稀疏性、非局部相似性、平滑性3种先验信息,提出一种基于GSR和加权全变分(weighted total variation, WTV)的图像CS重构算法,并针对传统的WTV采用全局加权会引入错误的纹理以及边缘状伪影的问题,利用一种新的WTV策略,只对图像的高频分量设置权重来保证图像重构质量。此外,针对硬阈值迭代法忽略低频的主分量系数,采用硬阈值-模平方方法来更好地保护非主分量系数。实验表明,相同采样率下,所提算法的峰值信噪比比非局部正则化全变分和基于GSR的CS算法平均分别提高5.4 dB和0.62 dB,验证了所提算法有效保护图像的细节信息。 相似文献
8.
基于随机卷积的压缩感知雷达成像 总被引:1,自引:0,他引:1
压缩感知理论为解决传统高分辨雷达面临的大带宽信号采样、海量数据存储、传输与处理等问题提供了契机。基于随机卷积的压缩感知是一种通用有效的数据获取策略,且便于物理实现。研究了基于随机卷积的压缩感知雷达成像方法,对随机测量体系中降采样的不同实现方式进行分析和讨论。仿真和实测数据验证了成像方法的有效性,并对比分析了不同降采样方式下信噪比和样本数对成像性能的影响。 相似文献
9.
压缩感知(compressive sensing,CS)理论为少量脉冲条件下实现高分辨逆合成孔径雷达(inverse synthetic aperture radar, ISAR)成像提供了新方法。然而由于CS的噪声敏感性,其成像易受到噪声污染;另外,少量脉冲条件下很难保证噪声参数估计精度,这进一步加剧了ISAR成像污染。针对这一问题,提出一种散射区域加权CS ISAR成像算法,利用目标散射区域信息对冗余字典中的基函数进行加权,修正CS重建算法以抑制噪声散斑。为提高噪声参数估计精度,对回波采样建立子序列矩阵,提出矩阵扰动理论噪声参数估计方法。实验结果表明,所提方法能够有效抑制噪声影响,提高低信噪比和少量脉冲条件下ISAR成像质量。 相似文献
10.
传统的探地雷达(ground penetrating radar, GPR)数据采集需要满足Nyquist采样定理,严重影响了GPR成像效率。基于压缩感知理论,稀疏信号可以在远低于Nyquist采样率的情况下通过求解l1范数约束下的凸最优化问题得到精确恢复,克服了传统算法中数据采集的局限。将压缩感知理论应用于GPR成像,利用仿真数据系统分析了测量矩阵维度、信噪比、数据损失程度和目标密集度等因素对成像结果的影响。实验结果表明,与传统的GPR成像算法相比,压缩感知成像算法成像精度高,虚警少,对噪声和数据损失有一定的鲁棒性,可以大大节省数据存储空间和采集时间。 相似文献
11.
This paper proposes an application of compressive imaging systems to the problem of wide-area video surveillance systems. A parallel coded aperture compressive imaging system and a corresponding motion target detection algorithm in video using compressive image data are developed. Coded masks with random Gaussian, Toeplitz and random binary are utilized to simulate the compressive image respectively. For compressive images, a mixture of the Gaussian distribution is applied to the compressed image field to model the background. A simple threshold test in compressive sampling image is used to declare motion objects. Foreground image retrieval from underdetermined measurement using the total variance optimization algorithm is explored. The signal-to-noise ratio (SNR) is employed to evaluate the image quality recovered from the compressive sampling signals, and receiver operation characteristic (ROC) curves are used to quantify the performance of the motion detection algorithm. Experimental results demonstrate that the low dimensional compressed imaging representation is sufficient to determine spatial motion targets. Compared with the random Gaussian and Toeplitz mask, motion detection algorithms using the random binary phase mask can yield better detection results. However using the random Gaussian and Toeplitz phase mask can achieve high resolution reconstructed images. 相似文献
12.
基于压缩感知的频率步进探地雷达成像算法 总被引:1,自引:2,他引:1
与时域无载频脉冲体制的探地雷达技术相比,频率步进探地雷达(stepped frequency ground penetrating radar, SFGPR)具有较多优越性,但由于其工作频率是以阶梯方式步进,导致成像速度较慢。提出了一种基于压缩感知(compressive sensing, CS)的频率步进探地雷达成像算法。实验结果表明,基于CS理论构建的CS SFGPR系统具有数据采集时间短、成像速度快等特点。〖JP〗 相似文献
13.
现有认知雷达成像系统的资源调度策略只从距离向(或波形设计)或者方位向一个维度进行资源调度,没有充分分配和利用雷达系统资源,为此提出了一种针对步进频率逆合成孔径雷达成像系统的二维资源自适应调度算法,来进一步提高雷达系统的工作效率。该算法在对目标特征认知的基础上,根据压缩感知原理,计算对目标二维稀疏观测所需脉冲资源,依据二维资源调度模型,自适应分配二维脉冲资源,实现对多目标的交替稀疏观测成像。最后通过仿真验证了算法的可行性并与常规算法相比在资源饱和的情况下,可以执行更多的成像任务。 相似文献