首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
氨基酸手性修饰砌块用于不对称合成   总被引:2,自引:0,他引:2  
王建平  张淅芸  陈庆华 《科学通报》2001,46(17):1427-1431
利用以苯基甘氨酸1为代表的、来源丰富的α-氨基酸通过还原和官能团保护。修饰为氨基醇手性砌块3.5-(τ-孟氧基)-3-溴-2(5H)-呋喃酮手性试剂4与3在温和的条件下发生串联的不对称双Michael加成/分子内亲核取代反应,得到了具有4个新的手性中心的氨基酸手性修饰砌块/螺环/环丙烷类化合物7(52%,非对映体过量(de)≥98%),经元素分析,[α]D^20,UV,IR,^1HNMR,^13CNMR,MS以及X射线四圆衍射测定,确认了它的化学结构、立体化学和绝对构型,其结果可以为手性砌块的引入,合成含有某些活性官能团的复杂结构化合物以及探讨它们的生物活性提供新的方法和途径。  相似文献   

2.
陈庆华 《科学通报》1993,38(1):94-94
由于2(5-H)-呋喃酮的组份广泛地存在于具有生理活性的天然产物中,以及被用作有机合成的中间体,近年来,有机化学界对Υ-取代基α,β-不饱和丁烯内酯的合成和结构性能的研究给以极大的兴趣和关注。我们新近报道了新的手性源5-(1-(?)氧基)-3,4-二氯-2(5-H)-呋喃酮的合成及结构。本文在此基础上研究了手性源1与一系列硫醇类化合物及胺类化合物的反应,结果生成一类新颖不对称Michael加成/消除反应的立体专一性产物,它为新的手性源5-(1-(?)氧基)-4-硫醇基(或氨基(-3-氯-2(5-  相似文献   

3.
冰片助剂新手性源的合成及其立体专一性反应   总被引:8,自引:0,他引:8  
陈庆华 《科学通报》1994,39(23):2154-2154
近年来,5-羟基-2(5H)-呋喃酮作为某些具有生理活性天然产物的重要结构组分以及作为合成子用于天然产物的合成,引起了人们广泛的重视.我们曾报道了手性5-烷氧基-2(5H)-呋喃酮的有关研究工作,其中包括5-(艹孟)氧基-2(5H)-呋喃酮的合成及其不对称1,3-偶极环加  相似文献   

4.
中国豆荚软珊瑚内酯A的全合成   总被引:2,自引:0,他引:2  
郑其煌 《科学通报》1992,37(19):1801-1801
中国豆荚软珊瑚内酯A(Chilobolide A、l)是一从中国南海豆荚软珊瑚(Lobophytum s.p.)分离得到的大环二萜内酯类化合物,分子内含有一个14员环碳架,α,β-不饱和γ-内酯结构片段和环氧结构片段,有5个手性碳。这类化合物具有Michael受体的性质,大多具  相似文献   

5.
近年来,面手性逐渐引起了多个领域科学家的关注.面手性结构单元广泛存在于多种活性天然产物和药物分子中,如机械平面手性轮烷和平面手性大环化合物.这两类结构在分子机器、分子识别、不对称催化以及药物研发等多个领域展示出了重要的应用价值.然而,由于机械平面手性轮烷和平面手性大环化合物的结构复杂性,合成这两类化合物仍然面临着较大挑战,且合成方法相对较少.因此,研究高效制备上述两类面手性化合物的新策略是非常有价值的研究方向.目前,合成化学家已发展了手性色谱分离技术、手性源诱导、过渡金属或酶催化的不对称环化反应等制备面手性化合物的策略.本文综述了制备光学纯机械面手性轮烷和面手性大环两类结构的研究进展,旨在启发从事相关领域的合成化学家发展更多高效合成面手性结构的新策略,从而为高效构筑机械平面手性轮烷化合物和平面手性大环化合物提供借鉴.  相似文献   

6.
在过去的10年里, 有机小分子催化作为一门环境友好的有机合成方法学在不对称催化合成中的应用得到了重新发掘, 新颖的有机小分子催化剂和新型有机小分子催化的不对称反应受到广泛的关注. 含有氢键给体的手性有机小分子化合物通过分子间的氢键作用来活化反应底物中的羰基或硝基等官能团, 在很多的不对称催化反应中展示了优秀的手性诱导效果, 并获得了显著的进展. 其中, 具有双官能团氨基-硫脲类有机小分子催化剂在一系列的不对称迈克尔加成反应中获得了成功. 基于对现有的文献中关于双官能团氨基-硫脲类有机小分子催化剂分子的结构分析, 我们将“多氢键给体协同活化”策略成功应用于合成一类新型含多个氢键给体、具有多个手性中心、而且其空间位阻和电子效应等精细结构具有可调控性的手性氨基-硫脲类双官能团有机小分子催化剂Ⅰ和Ⅱ. 这类具有多氢键给体的氨基-硫脲类催化剂在乙酰丙酮、α-取代的β-酮酯、硝基烷烃等对各种取代的硝基烯烃类化合物的不对称迈克尔加成反应, 以及硝基烷烃对亚胺类化合物的不对称Nitro-Mannich反应中, 展现了非常优异的催化活性与底物适用范围.  相似文献   

7.
曹伟地  刘小华  冯小明 《科学通报》2020,65(27):2941-2951
不对称催化是获得手性物质最高效的方法之一.针对效率和选择性的核心问题,发展高效高选择性的手性配体和催化剂是关键.不对称催化经过几十年的发展,其中手性金属配合物催化最受关注,应用也最广泛,但优势手性配体极其有限.因此,创制高效高选择性的优势手性配体是不对称催化领域最重要和最具挑战性的目标.在过去20年里,冯小明团队一直潜心催化不对称合成方面的研究,设计、合成了一类全新的具有柔性构象的手性双氮氧-酰胺化合物,被公认为一类优势手性配体和催化剂,打破了传统优势配体刚性构象的要求.建立了手性双氮氧-金属配合物催化剂库,高效高选择性实现了50多类重要的不对称反应,尤其是一些不对称催化新反应,为多个手性药物分子和天然产物的合成提供了简单、高效、精准、绿色途径.本文介绍了该类配体和催化剂的设计、合成以及手性双氮氧金属配合物催化的代表性不对称反应.这些原创性和系统性的研究工作,为手性科学的快速发展作出了重要贡献.  相似文献   

8.
穆启运 《科学通报》1982,27(12):759-759
在高脱氧三尖杉酯碱的研究中发现,过量的亚磷酸三丁酯(2)存在下,使2-氧-6-甲基庚酰三尖杉碱(1)与α-溴代乙酸甲酯进行Reformatsky反应,不生成高脱氧三尖杉酯碱,而得到一种新的含磷三尖杉酯类生物碱——2-羟基-2-[二正丁氧基]-膦酰基-6-甲基庚酰三尖杉碱(3)及其差向异构体3′的混合物。不加入α-溴代乙酸甲酯及活性锌,其它反应条件相同,1与2反应得到另一种含磷三尖杉酯类生物碱——2-[二正丁氧基]-磷酰氧基-6-甲基庚酰三尖杉碱(4)及其差向异构体4′的混合物。  相似文献   

9.
设计并合成了一种新型的PNO配体.该配体具有原料易得、合成简单、易于纯化等优点.通过市售的手性原料经过三步简单反应便可得到该配体.该配体与[Ir(COD)Cl]2(COD, 1,5-环辛二烯)在四氢呋喃(THF)中混合可原位获得手性催化剂,催化苯乙酮及其衍生物的不对称氢化反应.该反应体系所得到的手性醇产物的产率最高可达>99%, ee值最高可达99%.该催化剂对烷基芳基酮能够展现出很好的催化效率,但是对于双烷基酮氢化的手性控并不理想.在一个较大规模的反应中(12 g底物),催化转化数(TON)可达100000.  相似文献   

10.
刘汉兴 《科学通报》1989,34(13):993-993
1980年以来,Sharpless等开发了一个用过渡金属钛催化的新型的对烯丙醇类化合物进行的不对称环氧化反应。这一反应是用Ti(OPr~i)_4作催化剂,用光学活性的酒石酸酯作不对称诱导试剂,用叔丁基过氧化氢作氧化剂,对具有烯丙醇结构的化合物中羟基邻近的双键进行不对称环氧化反应,其光学产率可高达90%以上,而且产物的手性中心的构型可以通过  相似文献   

11.
陈耀全 《科学通报》1994,39(24):2247-2247
自2′,3′-双脱氧-3′-叠氮胸苷(简称AZT(1))作为艾滋病的第一个治疗剂在80年代初在美国面世以来,为了提高它的疗效,改善它的毒副作用,各国化学家和药学家合成并评价了它的许多衍生物和类似物.我们从1989年开始,以AZT.为原料,制备了一系列2′,3′-双脱氧-3′-叠氮-5-甲基-2-N-烷基异胞苷(4a—f),并以AZT为对照化合物,在HIV-1感染的MT4细胞株上观察了它们的抗HIV-1活性.本文报道我们的研究结果.  相似文献   

12.
李沅英 《科学通报》1992,37(12):1098-1098
稀土元素的β-二酮配合物的质谱研究曾有文献报道,但大多数是含氟代的直链或杂环β-二酮稀土配合物。本文研究我们合成的1-苯基-3-甲基-4(β-苯甲酰基乙酰基)-吡唑酮-5(简称PMPEP=L)与镧、铕、铽配合物的质谱,此配体是由吡唑啉环上的羰基与支链上的两个羰基互为β位的三酮。本文首次报道此配体和镧、铕、铽三个元素配合物的质谱。  相似文献   

13.
王兴宝  王永  马玉芹  陈景文 《科学通报》2012,(Z2):2699-2704
发展有毒物质被细胞色素P450酶催化转化途径和机理的计算毒理预测方法,对于污染物的风险评价具有重要意义.本研究通过密度泛函理论计算,揭示了细胞色素P450酶活性中心(CpdI)催化氧化1,2-二溴-3-氯丙烷(DBCP)的反应机理,并考察了动力学同位素效应的影响.结果显示,DBCP羟基化反应与烷烃羟基化反应机理存在明显差异.不同于一般的双态反应,DBCP羟基化反应是自旋选择性反应.此外,DBCP羟基化第二步反弹过程中的能垒明显的高于烷烃羟基化过程.自旋密度分析表明,DBCP羟基化反应的氢提取步骤是一个氢原子转移过程.DBCP羟基化反应具有明显的动力学同位素效应(KIE),且温度和隧道效应对KIE值具有明显的影响.本研究可为卤代烷烃类化合物的生物转化预测提供理论依据.  相似文献   

14.
刘博  徐明华 《科学通报》2021,66(25):3251-3260
手性胺是一类重要的化合物,在合成化学和生物医药领域都有着广泛的应用.近20年来,伴随着过渡金属催化不对称合成研究的发展,高效高选择性合成手性胺的方法越来越多.其中,过渡金属催化的不对称卡宾插入反应已经成为合成各种手性胺,尤其是非天然手性氨基酸的一种最为有用的方法.近年来,以铜、铑、钯为代表的过渡金属卡宾对芳香胺、酰胺、咔唑、亚胺等底物的不对称N-H插入反应研究已经取得了积极的进展,最近对脂肪胺类底物也取得了重大突破.这些结果为结构多样的手性胺合成提供了重要方法,也为过渡金属催化下芳香胺、脂肪胺的不对称转化提供了新的思路.本文对近年来过渡金属催化的不对称卡宾插入反应的研究进展进行了归纳,主要介绍金属卡宾对各种胺类底物的不对称N-H插入反应在手性胺合成中的应用.  相似文献   

15.
从左旋樟脑磺酸出发, 经氧化、Curtius重排、还原等步骤合成得到一类新型手性相转移催化剂. 用X射线衍射测定了催化剂的晶体结构. 这类新型手性相转移催化剂可以有效地催化查尔酮分子的不对称环氧化反应.  相似文献   

16.
手性是自然界的普遍特征,并与生命现象密切相关.组成生命的许多基本物质,例如蛋白质、氨基酸和核糖核酸等均是手性化合物.同样,超过一半的药物分子都是手性化合物.因此,如何有效地发现和创造手性物质,如手性药物、手性农药、手性材料等一直是合成化学研究的焦点.经过跨世纪的追求与探索,人类终于发现人工合成的手性催化剂可以像酶一样合成手性物质.通过不懈的努力,化学家发展出了许多高效、高选择性的手性催化剂和不对称合成反应,部分手性催化剂的效率已经超越了生物酶.现在,不论是手性物质创造的多样性还是精准度都已达到了一个新的高度.手性催化剂和不对称合成反应已经在工业上得到了广泛应用,造福人类.本文将以不对称催化反应的发现、发展历程为主线,并结合我国在这一领域的研究进展,简要概述手性物质创造科学发展的昨天、今天和明天.  相似文献   

17.
以生长抑制率为指标, 采用改良的MTT法检测新合成的(顺)-3-(氯代亚甲基)-6-甲基-硫色满-4-酮(CMMT)对12株人源肿瘤细胞系(A549, SGC-7901, BGC-823, U937, K562, Hela, MCF-7, HEPG-2, A375, LS174T, HT1080, C4-2B )增殖的影响. CMMT对12种细胞的半数抑制浓度(IC50)在0.41~6.05 ?g•mL−1之间. 与同浓度的顺铂(CDDP)相比, 其抗肿瘤活性明显占优. CMMT能够明显抑制肿瘤细胞的生长, 具有极高的抗肿瘤活性, 研究结果为深入研究该类药物的体内抗肿瘤作用提供了有力的实验数据.  相似文献   

18.
陆承勋 《科学通报》1987,32(21):1628-1628
最近,我们用~(13)C-核磁共振技术证实了含核酸碱基衍生物的,具有二级酰胺结构的二元醇化合物及其O,O′-双乙酰氧基衍生物,如N-(β,β′-二羟乙基)-2-(尿嘧啶基-1)丙酰胺(HEUPA),N-(β,β′-二羟乙基)-2-(胸腺嘧啶基-1)丙酰胺(HETPA)及其O,O′-双乙酰氧基衍生物,N-(β,β′-双乙酰氧乙基)-2-(尿嘧啶基-1)丙酰胺(AcOHEUPA)及N-(β,β′-双乙酰氧乙基-2-(胸腺嘧啶基-1)丙酰胺(AcOHETPA),由于酰胺基的C-N键的部分双  相似文献   

19.
田军 《科学通报》1993,38(20):1916-1916
利用6,6-环戊烷基富烯与芳基锂作用形成的取代环戊二烯基锂,与双(环戊二烯基)四氯-μ-氧合二钛反应这一新的合成方法,制备了(η~5-环戊二烯基)[η~5-(1-(4-甲氧基苯基)环已烷基)环戊二烯基]二氯化钛(I).元素分析、核磁、红外、质谱分析确认合成产物为  相似文献   

20.
黃耀會 《科学通报》1959,4(13):428-428
作者曾报导了四圜素和脫水四圜素的合成途径。我們拟定的另一合成金霉素及脫水金霉素的途径是从2-氯5-甲氧基苯乙酮(Ⅰ)的Stobbe縮合开始。以所获得的β-乙氧羰基-γ-(2-氯-5-甲氧基-苯基)Δ~(β,γ)戊烯酸(Ⅱ)环化成β-萘甲酸的衍生物后,还原为醛(Ⅲ),再經一次Stobbe或Perkin縮合或其它反应,氢化,环化后可期获得(Ⅳ),然后再构造A环。显然,从(Ⅳ)合成脱二甲胺脱羟脱水金霉素(Ⅴ)不过是一般常規实驗而已。至于合成金霉素本身则可先将(Ⅱ)內酯化,破环后可期获得烷氧基酸(Ⅵ),經上述一系列步驟,最后可期获得金霉素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号