首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 767 毫秒
1.
<正>本文给出应用参变量积分理论计算概率积分的一种算法。 记 I=integral from 0 to +∞(e~(-x~2)dx),考虑参变量积分 F(t)=integral from 0 to +∞((e~(-t~2(x~2+1))/(x~2+1))dx) (1)由Weierstrass判别法,该积分对t∈[0,+∞]是一致收敛的,而被积函数在[0,+∞)×[0,+∞)是连续的,故F(t)在[0,+∞)内连续,于是 lim E_0(t)=F(0)=intgeral from 0 to +∞(1/(x~2+1))dx)=π/2  相似文献   

2.
对积分Ι=∫0 ∞(sinx/x)dx=π/2 (1)的计算方法进行深入研究,从多种渠道得出这一结果,值得注意的是本文应用了Fourier积分变换的对偶性质,巧妙而不失优美地给出了一个新方法,同时还得到一个新的收敛积分:∫ ∞ 0(sinx/x)2dx=π/2.(2)  相似文献   

3.
对于一类广义积分integral from n=0 to +∞ (sinx/x)dx,为了克服利用留数定理来计算的不足,采用两类积分变换即傅立叶变换和拉普拉斯变换来计算.通过实例计算证实了采用积分变换计算此类积分是简便、有效的.  相似文献   

4.
如果a_n=(1/π)integral from -πto πf(x)Cos nx dx(n=0,1,2,…)b_n=(1/π)integral from -πto πf(x)Sin nxdx(n=1,2,…)则称级数(a_0/2) sum from n=1 to ∞(a_n Cos nx b_n Sin nx)为f(x)的Foureir 级数。据Euler 公式e~(ix)=Cos x iSin x,f(x)的Fourier 级数可以写成复数形式:  相似文献   

5.
首先证明,L~2[0,2π]中(f,g)=1/πintegral from n=0 to2πf(x)(?)dx,||f||=(1/πintegral from n=0 to2π|f(x)|~2)dx~(1/2),三角函数系F_1={1/2~(1/2),cosX,SinX,…,CosnX,SinnX,…}是完全就范直交系。证:设SpanF_1为形如sum from k=0 to n(a_kcoskx+b_ksinkx)的三角多项式的全体。C_(2π)为以2π为周期的连续函数的全体,则据Weiestrass逼近定理,对(?)ε>0,f∈2π,(?)T(x)=sum from k=0 to N(a_kcoskx+b_ksinkx)使(?)|f(x)-T(x)|<ε  相似文献   

6.
<正> 在微积分中,为解决含参量积分的求导与积分顺序可交换的问题,教科书上多采用下述定理1与定理2。 定理1 若函数f(x,y)与f_y(x,y)在R[a,b;c,d]上连续,则函数φ(y)=integral from n=a to b(f(x,y)dx)在[c,d]上可导,且 φ′(y)=integral from n=a to b(f_y(x,y)dx) (1)  相似文献   

7.
I.總说 1.设:f(x)是以2π為周期的連续函数。记这种函数的全体为C_(2π)。下面所考慮的函数都屬於C_(2π)。將函数f(x)的Fejer積分和de la Vallee-Poussin積分以及Jackson积分分别记做 a_n(f,x)=1/nπ integral from n=0 to π/2 [f(x+2t)+f(x-2t)](sin nt/sin t)~2 dt, V_n(f,x)=1/2π(2n)!!/(2n-1)!! integral from n=-π to π f(t)cos~(2n) t-x/2 dt, J_n(f,x)=3/nπ(2n~2+1) integral from n=0 to π/2 [f(x+2t)+f(x-2t)](sin nt/sin t)~4 dt.  相似文献   

8.
本文在Riemann积分第二中值定理中,加上一个非常一般化的条件后,得出了一个较强的结果:设函数f在区间[a,b]上非负、不增,且f(a+0)-f(b-0)>0,函数g在[a,b]上Riemann可积,则存在一点ξ∈(a,b),使得integral from n=a to b f(x)g(x)dx=f(a)integral from n=a to ξ g(x)dx。  相似文献   

9.
<正>在定积分计算中,有如下性质.性质i:若f(x)为[-a,a]上的连续奇函数,则integral from n=-a to a f(x)dx=0性质ii:若f(x)为[-a,a]上的连续偶函数,则integral from n=-a to a f(x)dx=2 integral from n=0 to a f(x)dx本文将上述两个性质推广到如下情形、得到一个更一般的性质.性质1:若f(x)为闭区间[a,b]上的连续函数  相似文献   

10.
定义1.标准函数f(x)在(a,b)(?)~*R上有定义,如果 {n/integral from n=a_n to n f(x)dx存在且有限}∈U其中a=[a_n],b=[b_n],U为自然数集N的自由超滤子,integral from n=a_n to b_n f(x)dx是Riemann意义下的积分,则称f(x)在(a, b)(?)~*R上可积,称非标准数[integral from n=a_n to n f(x)dx]为f(x)在(a, b)(?)~*R上的积分,记作integral from n=(a.b) to f(x)dx。  相似文献   

11.
该文研究了具有一般权函数w(x)的积分integral from 0 to b w(x)f(x)dx,得出了普遍意义下的Gauss-Kronrod规则,给出并证明了相应代数精确度的两个结果。这些结果主要依赖于下列命题: (1)对一般权函数w(x),q,(z)=integral from 0 to b w(t)p_n(t)/(z-t)dt满足三项递推关系; (2)设E_n(z)为〔q,(z)〕~(-1)的主部,则q_n(z)E_n(z)∈span{1,q_(n+1)(Z),…,q_(2n+1)(Z)}; (3)integral from 0 to b w(z)p_n(z)z~k dz=0,0≤k≤n; (4)对特殊函数w(x)=1,E_n(z)之零点是〔a,b〕的单零点,且被p_n(x)的零点隔开。  相似文献   

12.
关于integral from n=0 to +∞(e~(-x~2)dx)的多种计算方法的概述  相似文献   

13.
本文对P·Heywood研究的广义积分integral from n=0 to 1(f(x)/(1-x)~ωdx)进行了探讨。在莫叶教授及陈留琨、霍守诚等人的研究基础上,将结果推广到ω=2或2<ω<3。  相似文献   

14.
在本文中给出两种方法来求:当n→∞时, J_n(ω)=integral from n=-1 to 1 ρ(x)((u_n(1)-u_n(x))/(1-x)~ω)dx的渐近表达式,这里u_n(x)为n次多项式,ρ(x)为适当选取的函数在开区间(-1,1)中连续并取正值,ω为适当的正实数。第一种方法利用多项式u_n(x)具有特殊形式的循环公式。第二种方法是:当u_n(x)具有洛巨里格表达式且ω的取值在适当的区间中时,可以求出(?)_n(ω)=integral from n=-1 to1 ρ(x)((u_n(x))/(1-x)~ω)dx,于是利用解析延拓法,当ω的取值在更大的区间中时,可以求出J_n(ω)。利用第二种方法证明了下述定理: 设α≥-1/2且α≥β>-1。令f(x)=sum from n=0 to ∞c_nP_n~((α,β))(x),这里P_n~((α,β))(x)表示雅谷比多项式,如果c_n终规为正,且sum from n=0 to ∞c_nP_n~((α,β))(1)=0, 则按照λ=1或1<λ<2,integral from n=0 to 1 ((f(x)/(1-x)~λ))dx存在的充要条件分别是Σc_nn~αlogn收敛或Σc_nn~(α 2(λ-1))收敛。利用本定理即可推出:作者在函数项级数的积分一文中所证明的关于勒襄特级数及切比晓夫级数的两定理。  相似文献   

15.
本文研究下述特征问题 Lu=-u″+integral from n=0 to x q(x,t)u(t)dt=λu,u(O)=u(π)=0证明了特征展开定理。  相似文献   

16.
设u(x,y)是上半平面内的调和函数且对任何y>0一致地有 integral from n=-∞ to ∞ |u(x,y)|dx≤A, (A是常数) (1) 则存在在(-∞,∞)上的有界变差函数g(t)使 u(x,y)=1/πintegral from n=-∞ to ∞ y/((t-x)~2 y~2)dg(t),(2) 这是大家熟知的一个基本结果。但在实际问题中积分(1)往往是不存在的,例如在Titchmarsh所著按二阶微分方程特征函数展开一书中所遇到的解析函数m(λ),ψ(x,λ),φ(x,λ)的虚部,一般说来都不满足(1)。本文应用围道积分的方法在比(1)弱得多的条件下给出积分表示式(2),而且成功的将我们的结果应用到特征函数展开及解析函数角形边值问题的研究。  相似文献   

17.
§1.总说我们记在[-π,π]上是勒贝格可积的,以2π为周期的周期函数的全体为L_(2π)。设f(x)∈L_(2π),其富里埃级数是?(f,x)=a_0/2+sum from n=1 to ∞(1/n)(a_ncosnx+b_nsinnx)=a_0/2+sum from n=1 to ∞(1/n)A_n(x) (1)级数(1)的共轭级数是?(f,x) = sum from n=1 to ∞(1/n)(-b_ncosnx+a_nsinnx) 我们还将考虑级数  相似文献   

18.
在数学分析中第二积分中值定理的基本形式是: 定理1 设f(x)在〔a,b〕(a〈b)上单调下降(即使广义的也可以),并且非负,则对〔a,b〕上的任意可积函数g(x),有integral from n=a to b (f(x)g(x)dx)=f(a) integral from n=a to b (g(x)dx) (1)其中ξ∈〔a,b〕。其证明可参见〔1〕、〔2〕、〔3〕。定理1仅告诉我们其中的ξ∈〔a,b〕,那么能否恰当地选取ξ,使之属于开的区间(a,b)呢?我们说,不一定!且看下面的例题。考虑〔0,(3/2)π〕上函数 f(x)=1与g(x)=cosx,显然它们满足定理1的条件,于是按照定理1,(1)式应该成立。然而  相似文献   

19.
在不定积分中,其中之一的积分方法:设y=f(x),x=φ(t)及f′(t)都是连续的,x=φ(t)的反函数t=φ~(-a)(x)存在且可导,并且∫f[φ(t)]·φ′(t)dt=F(t)+C,则∫f(x)dx=F[φ~(-a)(x)]+C。在定积分中的换元法则是:对于定积分integral from n=a to b(f(x)dx),其中f(x)在区间[a,b]上连续,如果函数x=0φ(t)满足下列条件(1)φ(t)在区间[α,β]上有定义′是单值的′单调的,且有连续导数φ′(t)。(2)当t在区间[α,β]上变化时,x=φ(t)的值在区间[a,b]上变化,在这些条件下,则有公式integral from n=a to b(f(x)dx)=integral from n=α to β(f[φ(t)·φ′(t)dt)  相似文献   

20.
本文的主要结果是: 设c_n终规为正。设sum from n=0 to ∞c_n=0。令f(x)=sum from n=0 to ∞c_nu_n(x),这里u_n(x)为勒襄特多项式P_n(x)(n=0,1,2,…)或者为切比晓夫多项式T_n(x)(n=0,1,2,…)。令I(ω)=integral from n=0 to 1 f(x)/(1-x)~ωdx,则按照ω=1或1<ω<2,I(ω)存在的充要条件是∑c_n logn收敛或∑c_nn~(2(ω-1))收敛。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号