首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
As the world’s second largest economy experiencing rapid economic growth, China has a huge demand for metals and energy. In recent years, China ranks first, among all the countries in the world, in the production and consumption of several metals such as copper, gold, and rare earth elements. Bioleaching, which is an approach for mining low grade and refractory ores, has been applied in industrial production, and bioleaching has made great contributions to the development of the Chinese mining industry. The exploration and application of bioleaching in China are reviewed in this study. Production and consumption trends of several metals in China over the past decade are reviewed. Technological processes at key bioleaching operations in China, such as at the Zijinshan Copper Mine and Mianhuakeng Uranium Mine, are presented. Also, the current challenges faced by bioleaching operations in China are introduced. Moreover, prospects such as efficiency improvement and environmental protection are proposed based on the current situation in the Chinese bioleaching industry.  相似文献   

2.
In this work, different magnesium silicate mineral samples based on antigorite, lizardite, chrysotile (which have the same general formula Mg3Si2O5(OH)4), and talc (Mg3Si4O10(OH)2) were reacted with KOH to prepare catalysts for biodiesel production. Simple impregnation with 20wt% K and treatment at 700–900°C led to a solid-state reaction to mainly form the K2MgSiO4 phase in all samples. These results indicate that the K ion can diffuse into the different Mg silicate structures and textures, likely through intercalation in the interlayer space of the different mineral samples followed by dehydroxylation and K2MgSiO4 formation. All the materials showed catalytic activity for the transesterification of soybean oil (1:6 of oil : methanol molar ratio, 5wt% of catalyst, 60°C). However, the best results were obtained for the antigorite and chrysotile precursors, which are discussed in terms of mineral structure and the more efficient formation of the active phase K2MgSiO4.  相似文献   

3.
Japan started the national project “COURSE 50” for CO2 reduction in the 2000s. This project aimed to establish novel technologies to reduce CO2 emissions with partially utilization of hydrogen in blast furnace-based ironmaking by 30% by around 2030 and use it for practical applications by 2050. The idea is that instead of coke, hydrogen is used as the reducing agent, leading to lower fossil fuel consumption in the process. It has been reported that the reduction behavior of hematite, magnetite, calcium ferrite, and slag in the sinter is different, and it is also considerably influenced by the sinter morphology. This study aimed to investigate the reduction behavior of sinters in hydrogen enriched blast furnace with different mineral morphologies in CO–CO2–H2 mixed gas. As an experimental sample, two sinter samples with significantly different hematite and magnetite ratios were prepared to compare their reduction behaviors. The reduction of wustite to iron was carried out at 1000, 900, and 800°C in a CO–CO2–H2 atmosphere for the mineral morphology-controlled sinter, and the following findings were obtained. The reduction rate of smaller amount of FeO led to faster increase of the reduction rate curve at the initial stage of reduction. Macro-observations of reduced samples showed that the reaction proceeded from the outer periphery of the sample toward the inside, and a reaction interface was observed where reduced iron and wustite coexisted. Micro-observations revealed three layers, namely, wustite single phase in the center zone of the sample, iron single phase in the outer periphery zone of the sample, and iron oxide-derived wustite FeO and iron, or calcium ferrite-derived wustite 'FeO' and iron in the reaction interface zone. A two-interface unreacted core model was successfully applied for the kinetic analysis of the reduction reaction, and obtained temperature dependent expressions of the chemical reaction coefficients from each mineral phases.  相似文献   

4.
《矿物冶金与材料学报》2021,28(12):1940-1948
The evolution of inclusions and the formation of acicular ferrite (AF) in Ca–Ti treated steel was systematically investigated after Mg and La addition. The inclusions in the molten steel were Ca–Al–O, Ca–Al–Mg–O, and La–Mg–Ca–Al–O after Ca, Mg, and La addition, respectively. The type of oxide inclusion in the final quenched samples was the same as that in the molten steel. However, unlike those in molten steel, the inclusions were Ca–Al–Ti–O + MnS, Ca–Mg–Al–Ti–O + MnS, and La–Ca–Mg–Al–Ti–O + MnS in Mg-free, Mg-containing, and La-containing samples, respectively. The inclusions distributed dispersedly in the La-containing sample. In addition, the average size of the inclusions in the La-containing sample was the smallest, while the number density of inclusions was the highest. The size of effective inclusions (nucleus of AF formation) was mainly in the range of 1–3 μm. In addition, the content of ferrite side plates (FSP) decreased, while the percentage of AF increased by 16.2% due to the increase in the number of effective inclusions in the La-containing sample in this study.  相似文献   

5.
A type of polymer/ceramic coating was introduced on a magnesium-based nanocomposite, and the nanocomposite was evaluated for implant applications. The microstructure, corrosion, and bioactivity of the coated and uncoated samples were assessed. Mechanical alloying followed by sintering was applied to fabricate the Mg–3Zn–0.5Ag–15NiTi nanocomposite substrate. Moreover, different contents of poly(lactic-co-glycolic acid) (PLGA) coatings were studied, and 10wt% of PLGA content was selected. The scanning electron microscopy (SEM) images of the bulk nanocomposite showed an acceptable homogenous dispersion of the NiTi nanoparticles (NPs) in the Mg-based matrix. In the in vitro bioactivity evaluation, following the immersion of the uncoated and coated samples in a simulated body fluid (SBF) solution, the Ca/P atomic ratio demonstrated that the apatite formation amount on the coated sample was greater than that on the uncoated nanocomposite. Furthermore, assessing the corrosion resistance indicated that the coatings on the Mg-based substrate led to a corrosion current density (icorr) that was considerably lower than that of the substrate. Such a condition revealed that the coating would provide an obstacle for the corrosion. Based on this study, the PLGA/hardystonite (HT) composite-coated Mg–3Zn–0.5Ag–15NiTi nanocomposite may be suitably applied as an orthopedic implant biomaterial.  相似文献   

6.
《矿物冶金与材料学报》2020,27(8):1009-1020
The mining industry produces billions of tons of mine tailings annually. However, because of their lack of economic value, most of the tailings are discarded near the mining sites, typically under water. The primary environmental concerns of mine tailings are related to their heavy metal and sulfidic mineral content. Oxidation of sulfidic minerals can produce acid mine drainage that leaches heavy metals into the surrounding water. The management of tailing dams requires expensive construction and careful control, and there is the need for stable, sustainable, and economically viable management technologies. Alkali activation as a solidification/stabilization technology offers an attractive way to deal with mine tailings. Alkali activated materials are hardened, concrete-like structures that can be formed from raw materials that are rich in aluminum and silicon, which fortunately, are the main elements in mining residues. Furthermore, alkali activation can immobilize harmful heavy metals within the structure. This review describes the research on alkali activated mine tailings. The reactivity and chemistry of different minerals are discussed. Since many mine tailings are poorly reactive under alkaline conditions, different pretreatment methods and their effects on the mineralogy are reviewed. Possible applications for these materials are also discussed.  相似文献   

7.
This study aims to discover the stress-state dependence of the dynamic strain aging (DSA) effect on the deformation and fracture behavior of high-strength dual-phase (DP) steel at different deformation temperatures (25–400°C) and reveal the damage mechanisms under these various configurations. To achieve different stress states, predesigned specimens with different geometric features were used. Scanning electron microscopy was applied to analyze the fracture modes (e.g., dimple or shear mode) and underlying damage mechanism of the investigated material. DSA is present in this DP steel, showing the Portevin–Le Chatelier (PLC) effect with serrated flow behavior, thermal hardening, and blue brittleness phenomena. Results show that the stress state contributes distinctly to the DSA effect in terms of the magnitude of thermal hardening and the pattern of blue brittleness. Either low stress triaxiality or Lode angle parameter promotes DSA-induced blue brittleness. Accordingly, the damage mechanisms also show dependence on the stress states in conjunction with the DSA effect.  相似文献   

8.
In order to promote the intelligent transformation and upgrading of the steel industry, intelligent technology features based on the current situation and challenges of the steel industry are discussed in this paper. Based on both domestic and global research, functional analysis, reasonable positioning, and process optimization of each aspect of steel making are expounded. The current state of molten steel quality and implementation under narrow window control is analyzed. A method for maintaining stability in the narrow window control technology of steel quality is proposed, controlled by factors including composition, temperature, time, cleanliness, and consumption (raw material). Important guidance is provided for the future development of a green and intelligent steel manufacturing process.  相似文献   

9.
Magnesium has wide application in industry. The main purpose of this investigation was to improve the properties of magnesium by reinforcing it using B4C nanoparticles. The reinforced nanocomposites were fabricated using a powder compaction technique for 0, 1.5vol%, 3vol%, 5vol%, and 10vol% of B4C. Powder compaction was conducted using a split Hopkinson bar (SHB), drop hammer (DH), and Instron to reach different compaction loading rates. The compressive stress–strain curves of the samples were captured from quasi-static and dynamic tests carried out using an Instron and split Hopkinson pressure bar, respectively. Results revealed that, to achieve the highest improvement in ultimate strength, the contents of B4C were 1.5vol%, 3vol%, and 3vol% for Instron, DH, and SHB, respectively. These results also indicated that the effect of compaction type on the quasi-static strength of the samples was not as significant, although its effect on the dynamic strength of the samples was remarkable. The improvement in ultimate strength obtained from the quasi-static stress–strain curves of the samples (compared to pure Mg) varied from 9.9% for DH to 24% for SHB. The dynamic strength of the samples was improved (with respect to pure Mg) by 73%, 116%, and 141% for the specimens compacted by Instron, DH, and SHB, respectively. The improvement in strength was believed to be due to strengthening mechanisms, friction, adiabatic heating, and shock waves.  相似文献   

10.
Continuous-drive rotary friction welding was performed to join cylindrical specimens of carbon steel (EN24) and nickel-based superalloy (IN718), and the microstructures of three distinct weld zones—the weld interface (WI)/thermo-mechanically affected zone (TMAZ), the heat-affected zone (HAZ), and the base metal—were examined. The joint was observed to be free of defects but featured uneven flash formation. Electron backscatter diffraction (EBSD) analysis showed substantial changes in high-angle grain boundaries, low-angle grain boundaries, and twin boundaries in the TMAZ and HAZ. Moreover, significant refinement in grain size (2–5 μm) was observed at the WI/TMAZ with reference to the base metal. The possible causes of these are discussed. The microhardness profile across the welded joint shows variation in hardness. The changes in hardness are ascribed to grain refinement, phase transformation, and the dissolution of strengthening precipitates. The tensile test results reveal that a joint efficiency of 100% can be achieved using this method.  相似文献   

11.
研究了一类Toda连续晶格系统的特殊孤立波解:紧孤立波解Compacton和尖峰孤立波解Peakon.设Toda系统中横向与纵向波动处于同一量级,通过行波约化,将Toda系统约化为关于行波变量的常微分方程.假设该方程的解具有局部正弦、局部余弦和指数形式,将常微分方程的求解问题转化为代数方程的求解,利用吴消元法,借助Mathematica数学软件,获得了Toda系统的Compacton解和Peakon解.Compacton解在有限区间外恒为零,是更强局部性的孤立波解.Peakon解在波峰处一阶导数不连续,但可用Dirac广义函数表示.通过电一力类比可以建立与Toda系统等价的电路,利用电路产生的孤子信号可以进行一些特殊的信号处理.  相似文献   

12.
广义Camassa-Holm方程的对称性约化和精确解   总被引:5,自引:2,他引:3  
利用一种更直接有效的对称性约化方法(CK直接约化法),研究具有充分非线性项的广义Camassa-Holm方程C(m,n,p)的精确解以及解受非线性项影响的情况.在3种规则的要求下得到了广义Camassa-Holm方程的对称性约化,特别研究了C(m,1,1)的对称性约化,约化的结果得到了丰富的解:紧孤立波解(Compacton),尖峰孤立波解(peakon),扭结解和光滑的钟型孤立波解.  相似文献   

13.
应用动力系统分支理论对一类耦合非线性微分方程进行研究,给出在各种参数条件下系统的相图分支及可能存在的孤立行波解、扭波解、反扭波解的精确公式.  相似文献   

14.
证明了多目标规划问题的较多有效解和较多最优解与有关较多个分目标问题的Pareto有效解和Pareto弱有效解之间关系的两个基本定理  相似文献   

15.
本文讨论了燃烧理论中提出的问题U_1=U_(xx)+λe~u,U|=0及U|=φ(X)的定常解的存在性、唯一性及爆破解的存在性,用不同于他人的分析方法给出了这一方程组存在定常解时的λ范围及定常解存在时的解析表达式;给出了定常解唯一的一个充分条件,在更强的不等式代换下得到了它的解发生爆破现象的两个充分条件,本文部分结果对λ=λ(x)为函数时仍然成立,对此我们仅将结论附在λ为常数时相应结果后面。  相似文献   

16.
本文运用辅助方程法,借助Mathematica软件,获得了一类广义五阶KdV方程的19个精确解,其中有17个是新得到的,这些解包括光滑孤立波解,爆破解,周期爆破解.  相似文献   

17.
研究了SK-KP方程,该方程同时具有Sawada-Kotera方程和Kadomtsev-Petviashvili方程两个模型的双重特点,是一个可积性非常好的高阶非线性偏微分方程.利用F展开法与指数函数法相结合的方法,考察了该方程的精确解,获得了许多与现有文献中解的表达式不相同的各种精确解,从而丰富了相关文献中关于SK-KP方程的孤立子解和周期解的种类.尽管这些解的形式独特,但它们同样具有孤立波解、纽子波解和周期波解的各种动力学特征.  相似文献   

18.
将文已有的求解非线性偏微分方程的试探函数法进行了一定的扩展,并将此方法应用于组合Kdv方程,简洁地求得了组合Kdv方程多个新的显示精确解,其中包括一般形式的行波解、奇异行波解、孤波解、有理函数解和三角函数解.  相似文献   

19.
利用假设待定法求出了广义坏Boussinesq方程的具双曲正割函数分式形式且渐近值不为0的4个新精确孤波解和6个余弦周期波解,并分别讨论了它们的有界性,揭示了行波波速的改变对上述钟状孤波解和余弦周期波波形变化的影响.  相似文献   

20.
研究含时滞反应扩散Giu-Lawson方程的行波解.利用波前解的存在性理论,通过构造一个二阶时滞微分方程的上解和下解,得到当时滞较小时,微分方程的波前解存在,当时滞较大时,即使微分方程的行波解存在,也必将失去单调性的结论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号