共查询到6条相似文献,搜索用时 0 毫秒
1.
电渗流(EOF)广泛应用于微流控芯片中的流体传输与混合.针对具有一定滑移长度的疏水表面微通道,建立了描述EOF的控制方程,基于有限元分析方法对微通道EOF进行了数值模拟,研究了微通道高度、电场强度和溶液浓度等对EOF的影响.结果表明,疏水表面和亲水表面微通道EOF的瞬态过程相似,稳态时间尺度在ms量级,大小与微通道高度的平方成正比;EOF速度大小与电场强度成正比,与微通道高度无关;由于边界滑移的存在,疏水表面比亲水表面EOF速度明显增大,且随着溶液浓度的增大,EOF速度增大相对要大的多.该结论对于具有一定滑移长度的疏水表面微通道内EOF的精确操控具有一定的参考意义. 相似文献
2.
鉴于微通道或微结构内液体沸腾所具特性,从热力学的相稳定性分析着手,推导出了微通道或微结构内液体沸腾时的气泡产生或核化条件,较好地阐明了微小尺度空间内的超常沸腾现象;给出核化条件的无量纲准则工将为最终的定量化奠定理论基础。 相似文献
3.
使用Enskog模拟Monte Carlo法(ESMC)对稠密气体在微纳通道内的流动和换热进行了模拟, 并与直接模拟Monte Carlo法(DSMC)和一致性Boltzmann算法(CBA)所得的结果进行了对比, 对微纳通道内稠密气体流动和换热特性进行了分析. 结果表明, 当气体密度较大时, 稠密气体效应对流动和换热的影响不可忽略, 这种效应使得通道内壁面阻力系数减小, 且壁面换热特性也与不考虑稠密气体效应时有所不同. 相似文献
4.
恒壁温边界条件下不可压缩气流在微通道内的二维层流换热 总被引:2,自引:0,他引:2
基于贴壁层概念和已经求得的贴壁层内气体黏度和导热系数变化规律,求解了等壁温边界条件下微通道内气体完全发展的二维层流换热,分别得到了平行平板微槽道和微圆管内温度分布和对流换热系数. 相似文献
5.
针对目前应用较广的平板膜竖直结构提出改进, 设计具有一定的倾斜角度θ 的梯型平板膜结构, 使其在保持膜面附近气泡错流速度的同时增加气泡与膜面弹性碰撞的强度与次数, 提高膜面曝气冲刷效率, 高效控制膜污染, 最终降低SMBR中由强曝气所产生的高能耗. 通过对 Vries 建立的气泡与竖直平板相互碰撞数学模型的推导和改进, 利用计算机迭代运算技术得到一定曝气位置下不同气泡大小范围内的相对适宜的倾斜角度q. 最后对于SMBR实际应用中多组平行放置的单片梯型膜提出建议, 设计膜组件间隔8~15 mm, 并在组件间5~7 mm位置进行曝气, 梯型膜设计的最佳角度q 在1.7°~2.5°之间. 相似文献
6.
《中国科学:技术科学》2017,(2)
借助红外摄像和图像分析技术,并结合非等温结晶动力学模型理论分析,系统研究了微量低温保护剂溶液在液氮表面的Leidenfrost效应及其影响因素.研究结果表明:微水滴的相变温度最高(约273K),最大结晶度变化率达到3×10~(-2),最大运动速度值为100~130mm/s,但其Leidenfrost时间最短;随着低温保护剂浓度的增大,其相变温度降低(20%和50%甘油分别约为250和225K),结晶变化率显著减小(20%和50%甘油分别约为1.4×10~(-3)和7×10~(-7)),其最大运动速度值也会降低(20%和50%甘油分别为90~120和85~105mm/s),且Leidenfrost时间会随着浓度增大而增长;Vs55的相变温度最低(约158K),结晶度变化率最小(约2.8×10~(-16)),最大运动速度值降低到75~95mm/s,且其Leidenfrost时间最长(约是水的2~3倍);微液滴体积越大,其Leidengfrost时间越长,但对低浓度溶液(水和20%甘油)最大运动速度的影响不大,而对于高浓度溶液(50%甘油和Vs55)则是呈现出"体积越大,速度越快"的变化趋势.这些结论对于微液滴玻璃化保存生物样本方案的优化设计具有重要的指导意义. 相似文献