首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
双中子星并合的引力波暴GW170817及其多波段电磁对应的发现标志着多信使引力波天文学时代的来临.通过引力波探测器对致密双星并合产生的引力波波型的观测可以独立测量波源的光度距离,这预示着引力波源可以作为"标准汽笛"来研究宇宙的膨胀历史,从而提供了一种研究宇宙学的新途径.本文介绍利用引力波"标准汽笛"来限制宇宙学参数的基本原理,着重讨论各种确定波源距离和红移的方法.同时讨论地基第二代和第三代引力波探测器,以及空间引力波探测器对宇宙学参数,特别是哈勃常数和暗能量参数的限制能力.  相似文献   

2.
对于双黑洞、双中子星并合引力波及其电磁对应体、宿主星系的观测开启了引力波多信使天文学时代.本文简要介绍引力波、电磁对应体、宿主星系联合观测在提高信号探测效率、增加对波源物理性质的理解、挖掘波源群族性质等方面的基本概念,重点介绍一个贝叶斯引力波天文学框架处理上述问题的方法和此框架在引力波-宿主星系、引力波-短伽玛暴联合观测方面的应用.  相似文献   

3.
引力波是爱因斯坦最重要的预言之一,是检验广义相对论正确性的重要工具.引力波理论及其探测一直以来都是理论物理学家和实验物理学家感兴趣的研究领域.事实上,随着科学技术的发展,人类已经具备了建造极度灵敏的地面探测器以及空间探测器的能力,直接探测引力波已经成为现实.2015年9月14日,LIGO首次直接探测到引力波,该信号源自一次双黑洞并合事件,自此人类进入引力波常规化探测阶段,终于拉开了引力波天文学时代的序幕.地面引力波探测器最主要的波源是处于旋近和并合阶段的致密双星.如果在探测到这些波源所辐射出的引力波信号的同时,又能观测到波源对应的电磁波信号,那么引力波信号和电磁波信号可以相互补充,形成新的观测模式.然而单个地面引力波探测器很难准确地探测引力波信号,也不能进行波源精确定位,将多个探测器联网组合,这样既能准确探测引力波信号,又能大幅提高引力波波源的定位精度.本文中,首先介绍探测器联网对引力波信号GW150914源的定位情况,然后介绍了两种最常用的估计定位精度的方法,即马尔科夫链蒙特卡罗(Markov Chain Monte Carlo,MCMC)的方法和解析的方法.最后,选用一种解析的方法讨论未来中国引力波探测器与日本及澳大利亚所组成的探测器网络的定位精度,并给出了中国的较优台址.最后,还讨论了中国加入世界引力波探测器网络行列对引力波波源定位的贡献.  相似文献   

4.
引力波直接探测已经被LIGO成功实现.在这个重大实验发现中,理论模型的重要作用得到充分体现.有效单体数值相对论模型不仅提升了既定硬件的灵敏度,把实验结果的置信度从4.6σ加强到5.1σ,而且还辨认出该引力波源是并合双黑洞.以这次实验结果所给出的双星并合事件率推断,地面引力波探测器接下来还会给出更多的引力波事件.这些引力波实验数据可以被用来进行天文学和基本物理学的研究.随着数据的积累和新脉冲星的加入,脉冲星计时计划的引力波探测精度也越来越高.空间引力波探测计划包括eLISA、太极和天琴等也在积极准备中.可以预期,引力波天文学将逐渐形成.在引力波天文学中,从信号读取到参数反演都离不开理论模型.不做任何解析近似的数值相对论是现实引力波源建模的通用工具.爱因斯坦方程的复杂数学结构和所需的庞大程序构架是数值相对论的两大困难.结合引力波天文学,本文对数值相对论的关键困难、发展历程、研究现状和在引力天文学中的应用等给出比较系统的描述.  相似文献   

5.
作为目前唯一一例人类明确探测到引力波信号及成协电磁对应体的双中子星并合事件, GW170817的发现提供了诸多天体物理过程与现象的关键信息,标志着多信使天文学新时代的开启.但地基引力波探测设备的探测灵敏频段较高,为双中子星并合事件提供引力波预警信号的能力有限.因此,我们考虑利用空间分赫兹引力波探测器为人们提供足够长时标的引力波信号预警,以实现后随电磁搜寻设备对并合事件的及时响应.在假定四年任务运行周期的条件下,本文重点展示了两类空间分赫兹引力波探测器(B-DECIGO和DO-Conservative)定位双中子星并合事件天区及并合时间的能力.对于在探测器开始运行后1–4年内并合的事件,探测器提供的空间、时间定位的预期结果最好,分别可达ΔΩ~10–2deg2和Δtc~0.2 s.围绕因双中子星并合而产生的各类电磁暂现事件,我们针对高能辐射、紫外-光学-近红外辐射、射电辐射等举例讨论了可能的天体物理过程,以及利用空间分赫兹引力波探测器实现多信使预警探测的独特优势与未来展望.  相似文献   

6.
热点排行     
<正>(新闻时段:2017-10-16至2017-10-31;排行依据:遴选出的30家核心媒体报道频次)1发现首个双中子星并合引力波事件[核心媒体报道频次:.30/30]10月16日,美国国家科学基金会召开新闻发布会,宣布激光干涉引力波天文台(LIGO)和室女座引力波天文台(Virgo)于2017年8月17日首次发现双中子星并合引力波事件,国际引力波电磁对应体观测联盟发现该引力波事件的电磁对应体。  相似文献   

7.
只有快速识别出引力波信号,才可以制导电磁望远镜及时探测到相关的电磁信号,对于全面了解引力波源所发生的天体物理过程,具有十分重要的科学意义.本文针对在激光干涉引力波天文台(Laser Interferometer Gravitational-Wave Observatory,LIGO)在线运行的并行求和无限冲击响应滤波(Summed Parallel Infinite Impulse Response,SPIIR)流水线数据处理系统,具体介绍了如何在图形处理单元(Graphics Processing Unit,GPU)上采用多种性能优化手段,大幅度提高其数据处理的速度来满足LIGO低延迟实时数据处理的要求.并进一步描述了如何在高新LIGO(Advanced LIGO)基础上实现极低延迟数据处理的计算方法、性能优化方法与相关的工具支持.  相似文献   

8.
在现有广义相对论中,引力波对距离影响的公式只适合于真空中受引力作用的粒子。LIGO实验在地球表面进行,激光干涉仪固定在地表上,处于电磁相互作用的平衡状态。电磁力比引力强10~40倍,引力波不可能克服电磁平衡力使两个干涉仪的距离发生改变。由于没有考虑到这个因素,LIGO实验的设计原理存在严重的问题,其关键的数据分析和计算都是错的。这也是韦伯引力波实验失败的真正原因,探测引力波的实验必须移到太空中进行。除此之外,LIGO实验还存在以下问题:一.没有发现引力波的暴发源,所谓的双黑洞并合事件,只是激光干涉仪测定到的数据与爱因斯坦理论的计算机拟合结果,不代表天文和物理上真实发生的事件。二.LIGO实验证实爱因斯坦引力理论的说法是循环论证,在逻辑上不成立。三.LIGO实验引力波能流密度的计算会导致自相矛盾的结果。四.LIGO实验的理论分析采用数值相对论,为了消除黑洞的奇异性引入许多修正导致误差。由于引力场方程的非线性,蝴蝶效应使误差放大。五.长度改变10~(-18)米的测量远远超出现有技术的能力,实际上不可能实现。这种精度的测量已经进入微观领域,并违背量子力学的测不准原理。LIGO实验中出现的信号不是由两个干涉仪之间距离的变化引起,而是由干涉仪的振动引起。六.因此LIGO实验中探测到的不可能是引力波的信号,可能是来源于两个干涉仪中间地带的某种干扰信号。  相似文献   

9.
2017年8月17日,激光干涉引力波天文台(LIGO)首次探测到来自双中子星合并的引力波GW170817.伴随GW170817的短伽玛射线暴与千新星也分别在1.74 s后和10.9 h后被伽玛射线卫星和光学望远镜探测到.对这些电磁对应体的观测与研究首次证实双中子星并合会产生大量重元素并形成千新星.通过相关理论与观测的比较,人们对于双中子星并合的中心引擎、短伽玛暴喷流的特性以及并合产生的抛射物性质等一系列重要的天体物理学问题进行了空前深入的研究.本文介绍伴随GW170817的各类电磁波对应体的性质,并探讨这些电磁波对应体的物理起源.  相似文献   

10.
正截至目前,美国激光干涉引力波天文台(LIGO)实验组已经通过两轮的科学运行实现了两项重大突破:2015年9月14日直接观测到由两颗恒星级黑洞并合产生的引力波,为人类开启了探索宇宙的一个新窗口;2017年8月17日,LIGO-VIRGO合作组第一次探测到双中子星并合引力波事件,并且世界上数十家机构协同合作,在多个电磁  相似文献   

11.
自2015年9月14日人类第一次探测到引力波以来,引力波探测的进展非常迅速.到目前为止LIGO已确认双黑洞并合引力波探测结果5例,分别为GW150914,GW151226,GW170608,GW170104和GW170814.以及确认的双中子星并合引力波探测结果1例,GW170817.另外还有疑似双黑洞并合引力波探测结果1例LVT151012.受引力波探测的驱动,关于引力波的物理学和天文学研究自2016年以来的发展也异常迅速.引力波的成功探测定性地支持了广义相对论.但引力波探测作为涉及强引力场、强动态时空区域的实验,它还可以定量地检验广义相对论,甚至有可能发现广义相对论的适用范围,指引超越广义相对论引力理论的发展.本文将针对如何利用引力波探测检验广义相对论的问题,从引力波定性性质、引力波极化自由度、引力波传播速度以及引力波波形特征几个方面作一个较为全面的介绍.  相似文献   

12.
迄今为止,aLIGO/Virgo共探测到5次恒星级双黑洞并合和1次双中子星并合发出的引力波信号,宣布了引力波时代的全面到来.双白矮星的绕转和并合产生的引力波信号则是未来空间引力波探测器的主要探测目标.双星演化是这些双致密星形成的主要途径.本文从恒星演化出发,对这些双致密星引力波源的形成图像和面临的不确定性进行系统地介绍.这些不确定性主要来自大质量恒星星风、恒星后期演化、超新星爆发、双星演化的基本过程等.  相似文献   

13.
 2016年2月12日,美国激光干涉引力波天文台(LIGO)和美国国家科学基金会联合宣布,2015年9月14日在美国的两个地面站同时观测到引力波,即GW150914事件。至今已观测到6次引力波事件,其中欧洲引力波天文台(VIR-GO)参加了第4次事件(GW170814),使分辨率提高了10倍。地面引力波探测的成果不仅验证了百年前广义相对论所预言的引力波,发展了理论物理的引力理论,而且开辟了引力波天文学的新领域。  相似文献   

14.
美国科学家宣布,他们探测到引力波的存在.引力波是爱因斯坦广义相对论实验验证中最后一块缺失的“拼图”. 美国加州理工学院、麻省理工学院以及“激光干涉引力波天文台(LIGO)”的研究人员当天在华盛顿举行记者会,宣布他们利用LIGO探测器于2015年9月14日探测到来自于两个黑洞合并的引力波信号.  相似文献   

15.
综述了可能存在的高频引力波源,列举了高频引力波电磁响应的几种具体形式,重点介绍了高频电磁波束对引力波的电磁响应及使用该方法探测高频引力波的现实性.  相似文献   

16.
综述了可能存在的高频引力波源,列举了高频引力波电磁响应的几种具体形式,重点介绍了高频电磁波束对引力波的电磁响应及使用该方法探测高频引力波的现实性.  相似文献   

17.
目前世界上各大引力实验室几乎都使用激光干涉仪做引力波探测器.该探测器的主要形式是带有功率重循环和信号重循环的Fabry-Perot(F-P)迈克尔逊干涉仪.本文简要回顾了激光干涉仪引力波探测器主要技术的发展历史,重点分析了用干涉仪探测引力波的原理、方法和关键技术.特别是围绕探测灵敏度的提高,分别讲述了Schnupp不对称、Fabry-Perot臂腔、功率循环和信号循环对探测灵敏度的贡献.最后,以激光干涉仪引力波观测(Laser Interferometer Gravitational Wave Observatory,LIGO)的实验装置为例,介绍了干涉仪复杂的锁定方法和精密光学技术的发展现状.  相似文献   

18.
自2016年2月美国LIGO探测到了双黑洞并合所产生的GW150914引力波信号以来,国际上引力波科学研究和观测工作开展得如火如荼。该文对引力波领域SCI论文进行文献计量分析,从整体态势、高频关键词、高被引论文等维度展开,旨在了解引力波领域国际发展态势。  相似文献   

19.
在星系形成的等级结构模型中,亚星系的结构先形成,之后再不断地通过并合形成越来越大的星系.伴随着星系的并合,星系中心的大质量黑洞也不断经历并合.在富气体星系的并合过程中,气体落入星系的中心,可能触发恒星的形成和黑洞的吸积.黑洞不断通过并合和气体吸积,从小到大形成现在观测到的在不同红移处的超大质量黑洞,因此,在星系的演化过程中,不同红移处必然存在很多大质量黑洞双体系统,甚至三体系统.本文将主要对宇宙中大质量双黑洞的观测和理论做一个简要的评述.美国升级后的激光干涉引力波天文台宣称首次直接探测到了引力波,该引力波源为几十倍太阳质量黑洞双星的并合.这么大质量的致密双黑洞是如何形成的?它们的并合率为什么这么高?本文也会简单提及恒星级双黑洞的形成和演化模型.  相似文献   

20.
截至2018-01-16,LIGO已成功探测引力波事件6次.可以预期,引力波探测事件会越来越多,引力波天文学会很快进入到大数据阶段.深度学习在大数据处理方面近年来得到迅速发展.它在数据处理速度,准确度等方面都表现出极大的优势.深度学习在引力波数据处理中的应用讨论还不多.本文引入此问题,并对其进行初步研究.引力波数据最大的特点是强噪声、弱信号.现行的数据处理方法是利用匹配滤波的方式把引力波信号从强噪声中挖掘出来.同时,匹配滤波方法还可以确定引力波源的性质,定量确定其参数.匹配滤波方法的弱点是计算量巨大.这导致数据处理速度很慢.对于将来的大数据引力波天文学,这更将是一个巨大的隐患.匹配滤波方法的另一个潜在问题是,完备准确的理论波形模板是其工作的前提条件.这个潜在问题的后果是很难找到理论预期之外的引力波信号.深度学习的数据处理方法有可能在这些问题上提供出路.同时,深度学习也会遇到其自身的若干困难和问题.本文将从网络结构、训练数据制备、训练优化、对信号识别的泛化能力、对数据的特征图表示以及对特征数据遮挡的响应等方面来展开讨论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号