首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 88 毫秒
1.
前混式磨料水射流切割套管的深度计算模型   总被引:2,自引:1,他引:2  
基于能量原理,建立了前混式磨料水射流切割套管的物理模型和数学模型。理论分析和实验结果表明,前混式磨料水射流切割套管的深度与磨料的种类有密切的关系。采用石榴石作磨料,其切割深度明显大于采用石英砂时的切割深度。 该研究结果为将前混式磨料水射流技术应用于井下套管切割提供了理论依据。  相似文献   

2.
基于能量原理 ,建立了前混式磨料水射流切割套管的物理模型和数学模型。理论分析和实验结果表明 ,前混式磨料水射流切割套管的深度与磨料的种类有密切的关系。采用石榴石作磨料 ,其切割深度明显大于采用石英砂时的切割深度。该研究结果为将前混式磨料水射流技术应用于井下套管切割提供了理论根据。  相似文献   

3.
前混合磨料高压水射流切割喷嘴的数值模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
为了延长喷嘴的使用寿命,提高水射流设备的使用效率,对前混合磨料高压水射流的喷嘴结构进行了优化设计.利用CFD软件对几种典型喷嘴的内部流动进行了数值模拟和仿真,得到了压力分布图、速度分布图、紊动能分布图及轴线上轴向速度图等仿真结果.对仿真结果进行了对比分析,得出了结构型式较好的喷嘴,为耐久喷嘴的研制提供了依据.分别用3种喷嘴做了一系列的试验,并与仿真结果进行了对比,证明仿真结果是准确的.  相似文献   

4.
5.
利用水射流切割实验系统,在80~240 MPa压力范围内对完全淹没状态下磨料水射流切割岩石的性能进行了实验研究.通过实验及数据分析,得出了磨料粒径和质量流量、射流压力、靶距、切割横移速度等参数对射流切割性能的影响规律.结果表明,在实验给出的工况条件下,磨料流量存在最佳值,在一定范围内切割深度随磨料流量增加而增加,当磨料流量达到一定值后,切割深度随流量增加反而下降;切割深度与射流压力基本呈线性增长关系;随着靶距的增大,切割深度逐渐减小;切割深度随切割速度的增加呈指数衰减趋势.  相似文献   

6.
利用水射流切割实验系统,在80-240MPa压力范围内对完全淹没状态下磨料水射流切割岩石的性能进行了实验研究.通过实验及数据分析得出了磨料粒径、质量流量、射流压力、靶距及切割横移速度等参数对射流切割性能的影响规律.结果表明,在实验给出的工况条件下,磨料流量存在最佳值,在一定范围内切割深度随磨料流量的增加而增加,当磨料流量达到一定值后,切割深度随流量的增加反而下降;切割深度与射流压力基本呈线性增长关系;随着靶距的增大,切割深度逐渐减小;切割深度随切割速度的增加呈指数衰减趋势.  相似文献   

7.
邵泉江  侯永  陆峰峰  赵韡 《科技信息》2011,(8):366-366,368
利用自行设计的煤矿井下磨料水射流切割系统对钢板进行切割实验,研究各切割参数(切割速度、驱动压力、切割靶距和磨料流量)对切割性能的影响规律,为今后开发研制煤矿井下用磨料水射流切割机提供一定的技术依据。试验结果表明:(1)系统驱动压力与切割深度呈线性变化关系;(2)综合考虑切割深度和切割效率,切割速度存在一个最佳范围;(3)切割靶距存在着一个最佳值;(4)磨料流量也存在一个最佳值。  相似文献   

8.
9.
磨料─水射流切割是近年来发展起来的高新技术,已在许多国家得到广泛应用.本文综述了该技术的基本概况,包括工作原理,系统组成,工艺应用特点,主要工艺参数对切割过程的影响,以及国外最新研究动态,并提出一些看法.  相似文献   

10.
针对现有前混合磨料射流系统不能实现磨料连续供给的问题,提出利用射流泵原理抽吸和混合磨料实现连续加料的新思路,即利用有压水从射流泵喷嘴以一定速度喷出而引起的负压场卷吸磨料进入射流泵内的混合腔,并与水混合后经喉管和扩散管进入高压胶管,最后经切割喷嘴加速后喷出,形成连续磨料水射流。为使系统性能最优,分析了连续加料系统的结构组成及工作原理,并设计了系统的结构与尺寸;运用数值模拟方法对影响连续加料与射流性能的主要因素——切割喷嘴与射流泵喷嘴面积比进行优化设计,分析了其对系统性能的影响规律,确定了其最优取值范围;通过室内压力测试、连续加砂及切割试验对系统性能进行了验证,结果表明,在合适的面积比结构下,该连续加砂系统在磨料入口能形成负压及足够的压力梯度,将磨料吸入并加速,且在切割喷嘴端仍然保留足够的静压转化为动能,实现前混合磨料水射流的连续高效作业。  相似文献   

11.
截割性能的试验研究   总被引:2,自引:1,他引:2  
文章介绍了单刀截割试验的原理和方法,并根据试验的结果分析了各种参数对截割性能的影响.所得结论对采煤机和掘进机工作机构的设计具有指导作用。  相似文献   

12.
PEC锚固槽钢作为一种槽式预埋件,可以对各种建筑部件进行固定,且具有便于安装和可调节的特点.为了解锚固槽钢的拉拔锚固性能,对不同型号的锚固槽钢进行拉拔加载试验研究.试验共有四种型号的锚固槽钢,总共14个试件.详细介绍了试验方法和主要试验结果,并对试件的破坏模式进行了分析.试验结果表明,锚固槽钢在拉拔荷载作用下具有良好的工作性能.  相似文献   

13.
在对锚固地层工程特性分析的基础上,提出了6个可指代锚固地层特性的工程相关指标,将3个盾构机可操作参数一并纳入输入特征,并以盾构机贯入度和刀盘扭矩作为盾构机掘进性能的输出指标,构建了一套适用于盾构机穿锚问题预测的模型指标。依托武汉地铁实际工程,收集了盾构机穿锚实时掘进数据,采用LightGBM方法分别搭建了贯入度和刀盘扭矩预测模型,并利用鲸鱼优化算法(WOA)对LightGBM内的超参数进行寻优,最终得到WOALightGBM预测模型。结果表明,构建的盾构机穿锚模型指标具有一定的合理性,可成功预测盾构机穿锚掘进性能;与传统BP、ELM神经网络相比,WOA-LightGBM预测模型耗时相近,在预测精度方面有着明显优势。  相似文献   

14.
工程装备高压水射流清洗效能的模糊综合评判   总被引:5,自引:0,他引:5       下载免费PDF全文
高压水射流清洗设备的“清洗效能”水平受到诸多模糊因素的影响,基于模糊数学的理论,建立了“清洗效能”水平模糊综合评判的数学模型。将各种因素综合在一起并予以量化,从而实现其综合性能科学,公正的评判,为设备选购提供合理的依据。  相似文献   

15.
在对锚杆-土之间相互影响的机理和现象进行理论研究的基础上又进一步进行了试验研究,证明了理论研究结果的正确性。应用这个结果,可在给定界面参数条件下预测锚杆的特性,可在减少大量锚杆拉拔试验的情况下得到较可靠的锚杆特性数据,可根据给定的锚杆抗拔试验结果确定界面参数,从而大大方便锚杆的设计。  相似文献   

16.
针对高压气体(CO2、N2)“渗透破碎”杀灭液体中细菌的机理,采用正交方法,综合考虑杀菌时间、溶液浓度、作用压力和杀菌媒质等不同因素作为评价指标进行试验研究.结果表明:通过使用2种不同杀菌媒质所得结果的比较,进一步验证高压气体的“破碎”杀菌机理;CO2的“酸化效应”对杀菌效果的影响不大;杀菌率会随时间、压力、浓度的增加而增大.  相似文献   

17.
阐述了新型隧道悬挂预埋件--HVA化学黏着锚栓的性能特点、安装程序、安装注意事项以及在电气化隧道中的应用。采用新型隧道悬挂预埋件--HVA化学黏着锚栓提高了悬挂件预埋强度。  相似文献   

18.
液体磁性磨具光整加工法及其磨具的性能研究   总被引:1,自引:0,他引:1  
液体磁性磨具光整加工法是利用液体磁性磨具的磁流变特性开发的表面光整加工方法。介绍了液体磁性磨具光整加工法的工作原理,阐述了液体磁性磨具的磁特性、流变性及稳定性。  相似文献   

19.
There were only two kinds of superhard tool material at the past, i.e. diamond and cubic boron nitride (CBN). Manmade diamond and CBN are manufactured by the middle of 20th century. Various manufacturing methods and manmade superhard materials were developed later. They were widely used in different industry and science areas. Recently, a new kind of superhard tool material, C 3N 4 coating film, had been developed. American physical scientists, A. M. Liu and M. L. Cohen, designed a new kind of inorganic c...  相似文献   

20.
脉冲磨料射流主要参数对切割性能的影响   总被引:2,自引:0,他引:2  
通过实验,研究了淹没和非淹没状态下磨料浓度、振荡腔腔长、靶距等参数与脉冲磨料射流的切割和冲蚀性能的关系,对比分析了脉冲磨料射流与前混合磨料射流在相同实验条件下对花岗石、石灰岩等的切割、冲蚀性能。实验结果表明,脉冲磨料射流的最大切割深度和体积冲蚀速度在淹没状态下分别是前混合磨料射流的1.67倍和1.72倍,而在非淹没状态下为1.39倍和1.47倍。这对提高磨料水射流的切割效率、降低比能耗,扩大磨料水射流的应用范围奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号