共查询到17条相似文献,搜索用时 62 毫秒
1.
考虑平方补数S2(n)与除数和函数σ-1(n)的混合均值,用解析方法得到了∑n≤xσ-1(S2(n))n的渐近公式,所得结果补充了有关文献的结论. 相似文献
2.
对任意的非负整数n,著名的Smarandache LCM函数SL(n)定义为最小的正整数k,使得n|[1,2,…,k],其中n|[1,2,…,k]表示1,2,…,k的最小公倍数。设k≥2为给定的整数,bk(n)定义为最小的正整数使得bk(n)·n为完全k次幂,则称bk(n)为n的k次补数。本文主要利用初等及解析方法,研究复合函数SL(bk(n))与n的最大素因子函数P(n)的均方差,得到了一个较强的渐近公式。 相似文献
3.
对任意的正整数n,Smarandache k次幂补数Ak(n)定义为最小的正整数m,使得mn是完全k次幂数.用解析的方法研究了除数函数τ(n)对补数列Ak(n)的复合函数τ(Ak(n))的混合均值并得到了一个渐近公式. 相似文献
4.
王阳 《兰州理工大学学报》2006,32(4):153-154
设n是正整数,S(n)是n的立方幂补数,σ(n)表示n的除数和函数.探讨了∑n≤xσ(S(n))3n的渐近性质,用解析方法得到了一个渐近公式,进一步解决了F.Smarandache教授提出的第28个问题,补充了相关文献的结论. 相似文献
5.
王阳 《兰州理工大学学报》2006,32(3):148-150
设S(n)是正整数n的立方幂补数.用初等方法探讨了S(n)的k次均值的渐近性质,给出了两个更为精确的渐近公式,补充了有关文献的结论. 相似文献
6.
k次减法补数的因子函数均值的渐近公式 总被引:3,自引:0,他引:3
应美籍罗马尼亚数论专家F.Smarandache教授的要求,研究类似于Smarandache补数函数的性质.利用初等方法和解析方法,获得了本文定义的k次减法补数均值性质及渐近公式,扩展了F.Smarandache教授在《Only Problems,Not solutions》一书中相关问题的研究工作. 相似文献
7.
苟素 《西安石油大学学报(自然科学版)》2011,26(2):107-110,123
对任意整数1≤k≤9,如果数列{a(k,n)}中的每一个数都可以分成两部分,使得第二部分是第一部分的k倍,则该数列称作Smarandache kn数字数列.利用初等及组合方法研究Smaran-dache kn数字数列及除数和函数的混合均值性质,并给出一个有趣的渐近公式. 相似文献
8.
应用解析方法探讨了Ak(n),n为任意正整数,Ak(n)为n的k次幂补数的渐近性质,得到了一个有趣的渐近公式,彻底解决了F.Smarandache教授在《Only Problems,Not Solution》一书(Xiquan Publishing House,1993)中提出的第27个问题. 相似文献
9.
10.
设n为一正整数,am(n)表示n的m次幂补数。用解析方法研究了1/d(ak(n))与1/φ(ak(n))的均值分布性质,给出两个较强的渐近公式,完善了m次幂补数在数论中的研究和应用。 相似文献
11.
利用初等方法和解析方法,研究Smarandache双阶乘函数Sdf(n)与最大素因子函数P(n)的混合函数(Sdf(n)-P(n))β及δα(n)(Sdf(n)-P(n))β的均值问题(其中δα(n)为除数函数),得到2个较强的渐近公式. 相似文献
12.
一个包含Smarandache函数的混合均值 总被引:1,自引:0,他引:1
对任意n∈N+,著名的F.Smarandache LCM函数SL(n)定义为最小的正整数k使得n|[1,2,…,k],即SL(n)=min{k:n|[1,2,…,k]}。本文利用初等和解析的方法研究了SmarandacheLCM函数SL(n)和除数函数σ(n)的混合均值,并给出了一个较强的渐近公式。 相似文献
13.
对任意的正整数n,定义数论函数W(n)为最小的正整数k,使得n≤k(3k+1),即W(n)=min{k:n≤k(3k+1),k∈N}.利用初等及解析的方法研究复合函数S(W(n))的均值分布,并获得了较强的均值分布的渐近公式. 相似文献
14.
15.
对任意正整数n,著名的Smarandache函数S(n)定义为最小的正整数m使得n|m!,即S(n)=min{m∶n|m!,m∈N}。本文的主要目的是利用初等方法研究Smarandache函数S(n)与除数函数σα(n)的混合均值,并给出了一个较强的渐近公式。 相似文献
16.
对于任意正整数n,Smarandache双阶乘函数sdf(n)定义为最小的正整数m,使得nm!!,其中m!!=1·3·5…m, 2n2·4·6…m, 2|n,即sdf(n)=min{m:n|m!!,m∈N}。利用初等及解析方法研究Smarandache双阶乘函数sdf(n)的均值估计,得到一个关于函数sdf(n)的均值估计的渐近公式。从而解决了Felice Russo在文献[4]中提出的问题。 相似文献
17.
对任意的非负整数n,著名的F.Smarandache LCM函数SL(n)定义为最小正整数k,使得n│[1,2,…,k],其中[1,2,…,k]表示1,2,…,k的最小公倍数.利用初等及解析的方法研究函数SL(n)与素因数和函数ω軍(n)的加权均值分布,并给出一个有趣的加权均值分布的渐近公式. 相似文献