首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
G von Heijne 《Nature》1989,341(6241):456-458
Positively charged amino acids have been shown to be important elements in targeting-peptides that direct proteins into mitochondria, nuclei, and the secretory pathways of both prokaryotic and eukaryotic cells. The 'positive-inside' rule, which observes that regions of polytopic (multi-spanning) membrane proteins facing the cytoplasm are generally enriched in arginyl and lysyl residues whereas translocated regions are largely devoid of these residues, implies that the distribution of positively charged amino acids may also be a major determinant of the transmembrane topology of integral membrane proteins. If this is indeed the case, it should be possible to predictably alter the topology of a polytopic protein by site-directed insertions and/or deletions of positively charged residues in critical locations. I now describe a derivative of Escherichia coli leader peptidase, a polytopic inner-membrane protein, that switches from sec-gene-dependent membrane insertion with a Nout-Cout transmembrane topology to sec-gene-independent insertion with a Nin-Cin topology in response to the addition of four positively charged lysines to its N terminus.  相似文献   

2.
The 'molten' globular conformation of a protein is compact with a native secondary structure but a poorly defined tertiary structure. Molten globular states are intermediates in protein folding and unfolding and they may be involved in the translocation or insertion of proteins into membranes. Here we investigate the membrane insertion of the pore-forming domain of colicin A, a bacteriocin that depolarizes the cytoplasmic membrane of sensitive cells. We find that this pore-forming domain, the insertion of which depends on pH, undergoes a native to molten globule transition at acidic pH. The variation of the kinetic constant of membrane insertion of the protein into negatively charged lipid vesicles as a function of the interfacial pH correlates with the appearance of the acidic molten globular state, indicating that this state could be an intermediate formed during the insertion of colicin A into membranes.  相似文献   

3.
4.
R O Laine  A F Esser 《Nature》1989,341(6237):63-65
Human complement protein C9 is a hydrophilic serum glycoprotein responsible for efficient expression of the cytotoxic and cytolytic functions of complement. It assembles on the surface of a target cell together with C5, C6, C7 and C8 to form the membrane attack complex (MAC) and therefore has to change structure to become an integral membrane protein. As the protein assumes a stable structure in an aqueous environment, the question arises as to how it can enter the hydrophobic interior of a membrane. During MAC assembly C9 polymerizes into a circular structure, termed poly(C9) (ref. 8), which is responsible for the cylindrical electron microscopic appearance of the MAC. The suggestion has been made that C9 must at least partly unfold in order to enter a membrane and also that polymerization of the molecule is intimately linked to insertion and cytotoxicity. The extent of unfolding and the mechanism of polymerization are not understood, nor is it known precisely which parts of the molecule participate in the proposed structural changes. We have been able to capture refolding C9 conformers during membrane insertion with the help of sequence-specific anti-peptide antibodies. Some of these antibodies inhibit C9-mediated haemolysis but not C9 polymerization, while others have the opposite effect. This suggests that the two processes are independent.  相似文献   

5.
The synaptic vesicle protein synaptotagmin I(syt I) is a vesicle transmembrane protein present in synaptic vesicles, which has been proposed as the Ca^2 sensor that regulates secretion. The C2A domain is the membrane proximal part of its cytoplasmic domain. The interaction between C2A and lipid bilayer has been considered to be essential for triggering neurotransmitter release. In the present work, the measurements of membrane surface tension and surface concentration showed that the C2A domain of syt I exhibited two membrane-bound states: the surface adsorption state and the membrane insertion state. The surface absorption state formed in a Ca2~-independent manner with lower affinity, while the membrane insertion state formed with high affinity was only found in the presence of Ca^2 . Both the Ca^2 -independent and Ca^2 -dependent syt I membrane interactions required anionic phospholipids, such as phosphatidylserine (PS). When expressed into rat pheo-chromocytoma (PC12) cells and human embryonic kidney (HEK-293) cells, as demonstrated by immunofluorescence staining and subcellular fractionation, most of the C2A was found at the plasma membrane, even when the cells weredepleted of Ca^2 by incubation with EGTA. These resultssuggested a new molecular mechanism of syt I as a Ca^2 sensor in membrane fusion. Ca^2 -independent surface adsorption might attach syt I to the release site during the docking or priming step. When intracellular Ca^2 increased,syt I triggered the neurotransmitter release following the Ca^2 -dependent penetration into the target membrane.  相似文献   

6.
The protein Ran is a small GTP-binding protein that binds to two types of effector inside the cell: Ran-binding proteins, which have a role in terminating export processes from the nucleus to the cytoplasm, and importin-beta-like molecules that bind cargo proteins during nuclear transport. The Ran-binding domain is a conserved sequence motif found in several proteins that participate in these transport processes. The Ran-binding protein RanBP2 contains four of these domains and constitutes a large part of the cytoplasmic fibrils that extend from the nuclear-pore complex. The structure of Ran bound to a non-hydrolysable GTP analogue (Ran x GppNHp) in complex with the first Ran-binding domain (RanBD1) of human RanBP2 reveals not only that RanBD1 has a pleckstrin-homology domain fold, but also that the switch-I region of Ran x GppNHp resembles the canonical Ras GppNHp structure and that the carboxy terminus of Ran is wrapped around RanBD1, contacting a basic patch on RanBD1 through its acidic end. This molecular 'embrace' enables RanBDs to sequester the Ran carboxy terminus, triggering the dissociation of Ran x GTP from importin-beta-related transport factors and facilitating GTP hydrolysis by the GTPase-activating protein ranGAP. Such a mechanism represents a new type of switch mechanism and regulatory protein-protein interaction for a Ras-related protein.  相似文献   

7.
Guse A  Carroll CW  Moree B  Fuller CJ  Straight AF 《Nature》2011,477(7364):354-358
During cell division, chromosomes are segregated to nascent daughter cells by attaching to the microtubules of the mitotic spindle through the kinetochore. Kinetochores are assembled on a specialized chromatin domain called the centromere, which is characterized by the replacement of nucleosomal histone H3 with the histone H3 variant centromere protein A (CENP-A). CENP-A is essential for centromere and kinetochore formation in all eukaryotes but it is unknown how CENP-A chromatin directs centromere and kinetochore assembly. Here we generate synthetic CENP-A chromatin that recapitulates essential steps of centromere and kinetochore assembly in vitro. We show that reconstituted CENP-A chromatin when added to cell-free extracts is sufficient for the assembly of centromere and kinetochore proteins, microtubule binding and stabilization, and mitotic checkpoint function. Using chromatin assembled from histone H3/CENP-A chimaeras, we demonstrate that the conserved carboxy terminus of CENP-A is necessary and sufficient for centromere and kinetochore protein recruitment and function but that the CENP-A targeting domain--required for new CENP-A histone assembly--is not. These data show that two of the primary requirements for accurate chromosome segregation, the assembly of the kinetochore and the propagation of CENP-A chromatin, are specified by different elements in the CENP-A histone. Our unique cell-free system enables complete control and manipulation of the chromatin substrate and thus presents a powerful tool to study centromere and kinetochore assembly.  相似文献   

8.
J E Rothman  H F Lodish 《Nature》1977,269(5631):775-780
Studies of the synthesis and incorporation of the vesicular stomatitis virus glycoprotein into membranes in a synchronised cell-free system demonstrate a tight coupling between polypeptide synthesis and membrane insertion, as a result of which the nascent chain crosses the membrane. The studies reveal a surprisingly precise sequence by which the nascent chain of this membrane glycoprotein is glycosylated in two steps. These findings have important implications for the mechanisms of membrane assembly.  相似文献   

9.
Modis Y  Ogata S  Clements D  Harrison SC 《Nature》2004,427(6972):313-319
Dengue virus enters a host cell when the viral envelope glycoprotein, E, binds to a receptor and responds by conformational rearrangement to the reduced pH of an endosome. The conformational change induces fusion of viral and host-cell membranes. A three-dimensional structure of the soluble E ectodomain (sE) in its trimeric, postfusion state reveals striking differences from the dimeric, prefusion form. The elongated trimer bears three 'fusion loops' at one end, to insert into the host-cell membrane. Their structure allows us to model directly how these fusion loops interact with a lipid bilayer. The protein folds back on itself, directing its carboxy terminus towards the fusion loops. We propose a fusion mechanism driven by essentially irreversible conformational changes in E and facilitated by fusion-loop insertion into the outer bilayer leaflet. Specific features of the folded-back structure suggest strategies for inhibiting flavivirus entry.  相似文献   

10.
van den Akker F  Zhang X  Miyagi M  Huo X  Misono KS  Yee VC 《Nature》2000,406(6791):101-104
The atrial natriuretic peptide (ANP) hormone is secreted by the heart in response to an increase in blood pressure. ANP exhibits several potent anti-hypertensive actions in the kidney, adrenal gland and vascular system. These actions are induced by hormone binding extracellularly to the ANP receptor, thereby activating its intracellular guanylyl cyclase domain for the production of cyclic GMP. Here we present the crystal structure of the glycosylated dimerized hormone-binding domain of the ANP receptor at 2.0-A resolution. The monomer comprises two interconnected subdomains, each encompassing a central beta-sheet flanked by alpha-helices, and exhibits the type I periplasmic binding protein fold. Dimerization is mediated by the juxtaposition of four parallel helices, arranged two by two, which brings the two protruding carboxy termini into close relative proximity. From affinity labelling and mutagenesis studies, the ANP-binding site maps to the side of the dimer crevice and extends to near the dimer interface. A conserved chloride-binding site is located in the membrane distal domain, and we found that hormone binding is chloride dependent. These studies suggest mechanisms for hormone activation and the allostery of the ANP receptor.  相似文献   

11.
Mitochondrial preproteins are imported by a multisubunit translocase of the outer membrane (TOM), including receptor proteins and a general import pore. The central receptor Tom22 binds preproteins through both its cytosolic domain and its intermembrane space domain and is stably associated with the channel protein Tom40 (refs 11-13). Here we report the unexpected observation that a yeast strain can survive without Tom22, although it is strongly reduced in growth and the import of mitochondrial proteins. Tom22 is a multifunctional protein that is required for the higher-level organization of the TOM machinery. In the absence of Tom22, the translocase dissociates into core complexes, representing the basic import units, but lacks a tight control of channel gating. The single membrane anchor of Tom22 is required for a stable interaction between the core complexes, whereas its cytosolic domain serves as docking point for the peripheral receptors Tom20 and Tom70. Thus a preprotein translocase can combine receptor functions with distinct organizing roles in a multidomain protein.  相似文献   

12.
13.
D G Drubin  J Mulholland  Z M Zhu  D Botstein 《Nature》1990,343(6255):288-290
In yeast, the cortical actin cytoskeleton seems to specify sites of growth of the cell surface. Because the actin-binding protein ABP1p is associated with the cortical cytoskeleton of Saccharomyces cerevisiae, it might be involved in the spatial organization of cell surface growth. ABP1p is localized to the cortical cytoskeleton and its overproduction causes assembly of the cortical actin cytoskeleton at inappropriate sites on the cell surface, resulting in delocalized surface growth. We have now cloned and sequenced the gene encoding ABP1p. ABP1p is a novel protein with a 50 amino-acid C-terminal domain that is very similar to the SH3 domain in the non-catalytic region of nonreceptor tyrosine kinases (including those encoded by the proto-oncogenes c-src and c-abl), in phospholipase C gamma and in alpha-spectrin. We also identified an SH3-related motif in the actin-binding tail domain of myosin-I. The identification of SH3 domains in a family of otherwise unrelated proteins that associate with the membrane cytoskeleton indicates that this domain might serve to bring together signal transduction proteins and their targets or regulators, or both, in the membrane cytoskeleton.  相似文献   

14.
Mariappan M  Mateja A  Dobosz M  Bove E  Hegde RS  Keenan RJ 《Nature》2011,477(7362):61-66
Tail-anchored (TA) membrane proteins destined for the endoplasmic reticulum are chaperoned by cytosolic targeting factors that deliver them to a membrane receptor for insertion. Although a basic framework for TA protein recognition is now emerging, the decisive targeting and membrane insertion steps are not understood. Here we reconstitute the TA protein insertion cycle with purified components, present crystal structures of key complexes between these components and perform mutational analyses based on the structures. We show that a committed targeting complex, formed by a TA protein bound to the chaperone ATPase Get3, is initially recruited to the membrane through an interaction with Get2. Once the targeting complex has been recruited, Get1 interacts with Get3 to drive TA protein release in an ATPase-dependent reaction. After releasing its TA protein cargo, the now-vacant Get3 recycles back to the cytosol concomitant with ATP binding. This work provides a detailed structural and mechanistic framework for the minimal TA protein insertion cycle.  相似文献   

15.
Pathogenic bacteria using a type III secretion system (T3SS) to manipulate host cells cause many different infections including Shigella dysentery, typhoid fever, enterohaemorrhagic colitis and bubonic plague. An essential part of the T3SS is a hollow needle-like protein filament through which effector proteins are injected into eukaryotic host cells. Currently, the three-dimensional structure of the needle is unknown because it is not amenable to X-ray crystallography and solution NMR, as a result of its inherent non-crystallinity and insolubility. Cryo-electron microscopy combined with crystal or solution NMR subunit structures has recently provided a powerful hybrid approach for studying supramolecular assemblies, resulting in low-resolution and medium-resolution models. However, such approaches cannot deliver atomic details, especially of the crucial subunit-subunit interfaces, because of the limited cryo-electron microscopic resolution obtained in these studies. Here we report an alternative approach combining recombinant wild-type needle production, solid-state NMR, electron microscopy and Rosetta modelling to reveal the supramolecular interfaces and ultimately the complete atomic structure of the Salmonella typhimurium T3SS needle. We show that the 80-residue subunits form a right-handed helical assembly with roughly 11 subunits per two turns, similar to that of the flagellar filament of S. typhimurium. In contrast to established models of the needle in which the amino terminus of the protein subunit was assumed to be α-helical and positioned inside the needle, our model reveals an extended amino-terminal domain that is positioned on the surface of the needle, while the highly conserved carboxy terminus points towards the lumen.  相似文献   

16.
C M Woods  E Lazarides 《Nature》1986,321(6065):85-89
Erythroid differentiation entails the biogenesis of a membrane skeleton, a network of proteins underlying and interacting with the plasma membrane, whose major constituent is the heterodimeric protein spectrin, composed of two structurally similar but distinct subunits, alpha (relative molecular mass (Mr) 240,000) and beta (Mr 220,000), which interact side-on with each other to form a long rod-like molecule. Interaction of this network with the membrane is mediated by the binding of the beta subunit to ankyrin, which in turn binds to the cytoplasmic domain of the transmembrane anion transporter (also referred to as band 3). Purified alpha and beta subunits of spectrin from the membrane of mature red blood cells will spontaneously heterodimerize, suggesting that assembly of the spectrin-actin skeleton is a simple self-assembly process, but in vivo studies with developing chicken embryo erythroid cells have indicated that assembly in vivo is more complex. We now present evidence that newly synthesized spectrin subunits in vivo or in vitro rapidly adopt one of two competing conformations, a heterodimer or a homo-oligomer. These competing reactions seem to determine the overall extent of spectrin assembled during erythroid development by determining which conformation will assemble onto the membrane-skeleton (the heterodimer) and which conformations are targeted for degradation (the homo-oligomers).  相似文献   

17.
Modulation of spectrin-actin assembly by erythrocyte adducin   总被引:3,自引:0,他引:3  
K Gardner  V Bennett 《Nature》1987,328(6128):359-362
The spectrin-based membrane skeleton, an assembly of proteins tightly associated with the plasma membrane, determines the shape and mechanical properties of erythrocytes. Spectrin, the most abundant component of this assembly, is an elongated and flexible molecule that, with potentiation by protein 4.1, is cross-linked at its ends by short actin filaments to form a lattice beneath the membrane. These and other proteins stabilize the plasma membrane, organize integral membrane proteins and maintain specialized regions of the cell surface. A membrane-skeleton-associated calmodulin-binding protein of erythrocytes is a major substrate for Ca2+- and phospholipid-dependent protein kinase C (ref. 5), and thus is a target for Ca2+ by two regulatory pathways. Here we demonstrate that this protein, called adducin: (1) binds tightly in vitro to spectrin-actin complexes but with much less affinity either to spectrin or to actin alone; (2) promotes assembly of additional spectrin molecules onto actin filaments; and (3) is inhibited in its ability to induce the binding of additional spectrin molecules to actin by micromolar concentrations of calmodulin and Ca2+. Adducin may be involved in the action of Ca2+ on erythrocyte membrane skeleton and in the assembly of spectrin-actin complexes.  相似文献   

18.
Insulin stimulates the transport of glucose into fat and muscle cells. Although the precise molecular mechanisms involved in this process remain uncertain, insulin initiates its actions by binding to its tyrosine kinase receptor, leading to the phosphorylation of intracellular substrates. One such substrate is the Cbl proto-oncogene product. Cbl is recruited to the insulin receptor by interaction with the adapter protein CAP, through one of three adjacent SH3 domains in the carboxy terminus of CAP. Upon phosphorylation of Cbl, the CAP-Cbl complex dissociates from the insulin receptor and moves to a caveolin-enriched, triton-insoluble membrane fraction. Here, to identify a molecular mechanism underlying this subcellular redistribution, we screened a yeast two-hybrid library using the amino-terminal region of CAP and identified the caveolar protein flotillin. Flotillin forms a ternary complex with CAP and Cbl, directing the localization of the CAP-Cbl complex to a lipid raft subdomain of the plasma membrane. Expression of the N-terminal domain of CAP in 3T3-L1 adipocytes blocks the stimulation of glucose transport by insulin, without affecting signalling events that depend on phosphatidylinositol-3-OH kinase. Thus, localization of the Cbl-CAP complex to lipid rafts generates a pathway that is crucial in the regulation of glucose uptake.  相似文献   

19.
Novel potential mitotic motor protein encoded by the fission yeast cut7+ gene   总被引:45,自引:0,他引:45  
I Hagan  M Yanagida 《Nature》1990,347(6293):563-566
The structure equivalent to higher eukaryotic centrosomes in fission yeast, the nuclear membrane-bound spindle pole body, is inactive during interphase. On transition from G2 to M phase of the cell cycle, the spindle pole body duplicates; the daughter pole bodies seed microtubules which interdigitate to form a short spindle that elongates to span the nucleus at metaphase. We have identified two loci which, when mutated, block spindle formation. The predicted product of one of these genes, cut7+, contains an amino-terminal domain similar to the kinesin heavy chain head domain, indicating that the cut7+ product could be a spindle motor. The cut7+ gene resembles the Aspergillus nidulans putative spindle motor gene bimC, both in terms of its organization with a homologous amino-terminal head and no obvious heptad repeats and in the morphology of the mutant phenotype. But we find no similarity between the carboxy termini of these genes, suggested that either the cut7+ gene represents a new class of kinesin genes and that fission yeast may in addition contain a bimC homologue, or that the carboxy termini of these mitotic kinesins are not evolutionarily conserved and that the cut7+ gene belongs to a subgroup of bimC-related kinesins.  相似文献   

20.
Type 1 pili are the archetypal representative of a widespread class of adhesive multisubunit fibres in Gram-negative bacteria. During pilus assembly, subunits dock as chaperone-bound complexes to an usher, which catalyses their polymerization and mediates pilus translocation across the outer membrane. Here we report the crystal structure of the full-length FimD usher bound to the FimC-FimH chaperone-adhesin complex and that of the unbound form of the FimD translocation domain. The FimD-FimC-FimH structure shows FimH inserted inside the FimD 24-stranded β-barrel translocation channel. FimC-FimH is held in place through interactions with the two carboxy-terminal periplasmic domains of FimD, a binding mode confirmed in solution by electron paramagnetic resonance spectroscopy. To accommodate FimH, the usher plug domain is displaced from the barrel lumen to the periplasm, concomitant with a marked conformational change in the β-barrel. The amino-terminal domain of FimD is observed in an ideal position to catalyse incorporation of a newly recruited chaperone-subunit complex. The FimD-FimC-FimH structure provides unique insights into the pilus subunit incorporation cycle, and captures the first view of a protein transporter in the act of secreting its cognate substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号