首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
本文利用装备有程序控温反应池、抽空和质谱检测脱附物系统的FT—IR,在室温条件下研究了CO在Rh/SiO_2催化剂上的化学吸附态及其与O_2、NO、H_2的反应性能。实验站果表明:CO在Rh/SiO_2催化剂上存在着Rh(CO)_2[Ⅰ]、Rh(CO)[Ⅱ]和Rh_2(CO)[Ⅲ]三种化学吸附态;它们与O_2及H_2的反应活性顺序是[Ⅰ]>[Ⅱ](?)[Ⅲ];NO能从催化剂表面上置换CO吸附态[Ⅱ],並相应在此吸附位上产生两种吸附态Rh(NO)及RhO_2(NO);通过对CO和H_2共吸附、吸附的CO和H_2反应及H_2CO吸附的化学吸附态的检测及其脱附产物的质谱分析,说明了在Rh/SiO_2催化剂上CO和H_2反应过程中无H_2CO中间物产生。  相似文献   

2.
制备高分散的负载型催化剂是充分利用在自然界中储量极为有限的贵金属资源的重要手段.采用不同方法制备一系列负载Pd催化剂,考察了不同载体负载Pd催化剂的CO氧化性能.发现以乙酰丙酮钯为前驱体制得的Pd/TiO2催化剂活性远高于Pd/SiO2和Pd/Al2O3催化剂的活性,在室温下就表现出较好的CO氧化活性,且在无气相O2条件下CO可以与Pd/TiO2催化剂表面的氧物种(晶格氧)反应生成一定量的CO2.分散度测试、CO吸附的原位红外光谱和程序升温还原的结果表明Pd/TiO2催化剂上Pd物种以高分散Pd0形式存在,并与载体之间存在强相互作用,这可能是Pd/TiO2催化剂具有低温活性的主要原因.  相似文献   

3.
采用原位水热法制备了LaCoO_3/MCF、LaCoO_3/SBA-15催化剂,分别采用XRD、氮气物理吸附-脱附、TEM对催化剂进行了表征,并在固定床反应器中对催化剂的CO氧化反应活性进行了测试,考察了不同LaCoO_3负载量和不同载体负载的催化剂的CO氧化性能.结果表明:原位水热合成法制备的LaCoO_3/MCF催化剂具有较高的比表面积(281.1~427.6 m2·g-1)和三维介孔泡沫状孔道结构,LaCoO_3纳米颗粒均匀地分散在催化剂中.LaCoO_3的含量显著影响催化剂的CO氧化反应活性,负载量为30%的催化剂(30LaCoO_3/MCF)的反应活性最高,CO在387℃氧化完全.与SBA-15负载的催化剂相比,由于MCF的三维互通结构,催化剂30LaCoO_3/MCF的催化性能明显提高.  相似文献   

4.
采用DFT方法对CO吸附在PtRu(100)表面的吸附行为进行系统性的研究,分析了键参数及电子结构.结果表明Ru的加入确实能削弱CO在合金上的吸附并且活化CO分子.当Ru的含量达50%时,PtRu催化剂抗CO中毒能力最强.另外CO分子在合金表面的吸附还和其吸附位及表面原子排布有关,CO吸附在Pt上较吸附于Ru上更强,吸附位周围分布Ru较分布Pt更促进CO分子的活化.  相似文献   

5.
传统负载型金催化剂常以氧化物或活性炭作为载体,很少以金属磷酸盐作为载体.本文考察了具有不同晶相和形貌的LaPO_4负载金催化剂的CO氧化.采用沉淀法制备由纳米颗粒和短棒组成的六方相LaPO_4(记为LaPO_4-H).控制水热法处理的温度和时间(150℃,12h和220℃,18h)分别制备了六方相LaPO_4纳米线(LaPO_4-HNW)和单斜相LaPO_4纳米线(LaPO_4-MNW-220).通过在900℃焙烧六方相LaPO_4纳米线,制备了单斜相LaPO_4纳米线(LaPO_4-MNW-900).使用以尿素为沉淀剂的沉积-沉淀(DPU)法在4种载体上负载金(成分中金的质量分数为1%),把4种催化剂分别在350℃和500℃焙烧,并测试了催化CO氧化的活性.采用XRD、TEM、XPS、ICP-OES、N2吸附-脱附、CO2-TPD等测试手段,对催化剂进行了表征.研究结果表明,金纳米颗粒的大小是影响催化活性的决定性因素,即金颗粒越小,活性越好.不同的LaPO_4载体能影响负载于载体上的金颗粒的大小和热稳定性,进而影响催化活性.  相似文献   

6.
低温Fe基费托催化剂的主要活性相是_η-Fe_2C,CO在该催化剂上的吸附与活化行为是Fe基费托合成反应的重要步骤。为了从原子尺度上研究这一过程,本文基于密度泛函理论计算,在η-Fe_2C(011)完美表面和缺陷表面上对CO的吸附和活化行为进行了系统的对比研究。计算结果表明,CO在完美表面上的最稳定吸附位为与表面Fe结合的Top位,但活化前驱体位于三齿空位。CO直接解离路径因为能垒太高在_η-Fe_2C(011)完美表面上很难发生,而以HCO为中间体的H辅助CO解离路径则更有优势。当_η-Fe_2C(011)表面产生C空缺时,其生成的四齿空位成为CO的最稳定吸附位和活性位。同时,CO的直接解离能垒大幅下降,这导致CO直接解离和以HCO为中间体的H辅助解离路径可能同时发生。  相似文献   

7.
采用共沉淀-浸渍法制备PdO/Sn_xCe_yO_2催化剂,通过XRD、N_2吸附-脱附、CO-TPD和CO-DRIFT对催化剂的物相结构和表面性质进行表征和分析,并考察了催化剂的CO催化氧化活性。研究表明,催化剂的低温CO氧化活性与比表面积无关,而与表面晶格氧的活泼程度有直接关系。与富Sn催化剂Pd/Sn_(0.7)Ce_(0.3)O_2相比,富Ce催化剂Pd/Sn_(0.3)Ce_(0.7)O_2上的表面晶格氧更活泼,对低温CO的氧化起到了关键作用。CO-DRIFT结果显示,CO可以在室温下还原PdO,生成Pd~0和Pd~+。CO的吸附以Pd~0位上的线式吸附为主。相较于惰性预处理方法,氧化预处理有利于促进吸附CO的氧化,减少表面碳酸盐的生成。  相似文献   

8.
在温度25~300℃和压力0.1~3.0 MPa范围内,利用原位漫反射红外光谱法研究了CO和CO2在Rh-Mn-Li/SiO2催化剂上的化学吸附。在0.1 MPa和25℃时CO在该催化剂上存在线式、孪生和桥式吸附,以桥式吸附为主,3种吸附均能快速达到吸附平衡。压力保持0.1 MPa,温度由25℃升至300℃时,线式比桥式先脱附,至265℃时,3种吸附基本脱附完全;当温度维持205℃不变而压力逐步由0.1升至3.0 MPa时,线式吸附增量较少,桥式吸附增量较多;CO2在0.1 MPa,25℃时就能发生快速的解离吸附,即CO2→CO O,其吸附行为表现为CO的线式吸附,但吸附峰与纯CO吸附时不同;当温度稳定在25℃而压力逐步升至2.5 MPa时,不仅CO2吸附量增大,而且其2052 cm-1吸附峰有向高波数移动的趋势。  相似文献   

9.
不使用表面活性剂和氧化剂,利用液相沉淀法制备了Co3O4催化剂.采用XRD和TEM对催化剂进行了表征,着重考察了预处理条件、反应温度、空速等工艺条件对Co3O4催化剂上CO低温氧化性能的影响.结果表明:所制备的催化剂具有单一的立方相结构,晶粒尺寸在10~20 nm之间.经过氧化预处理的Co3O4在室温乃至零度以下(-78 ℃)都具有较高的CO氧化性能,在25 ℃下可连续反应500 min以上保持CO完全转化.催化剂的稳定性随原料气中CO浓度的降低而逐渐升高,随空速的提高活性下降较快.水蒸气的引入则对催化剂的稳定性有明显的负作用,导致在室温下使CO保持完全转化的时间明显缩短.  相似文献   

10.
采用溶胶-凝胶法(Sol-gel法)制备系列La-Mn-O载体,用沉积-沉淀法(DP法)制备负载型金催化剂,以CO催化氧化为探针反应,对催化剂活性进行测试,并考察催化剂的制备条件(焙烧温度、制备过程中溶液的pH值、Au的负载量以及载体的种类)对催化活性的影响,用XRD、BET和AAS等手段对催化剂进行表征.结果表明,当溶液的pH=9,Au的理论负载量为2%,未经焙烧的Au/LaMnO3催化剂表现出较好的活性,CO的最低完全转化温度为90℃.稳定性测试结果显示.Au/LaMnO3催化剂具有较好的稳定性,连续反应30 h,CO的转化率一直保持100%,放置150d后催化剂活性稍有下降,CO的最低完全转化温度由原来的90℃升至110℃.  相似文献   

11.
应用XRD分析了催化剂的体相结构,用红外光谱研究了CO和NO在CuO-La_2O_3/γ-Al_2O_3催化剂上的吸附,并对表面铜的价态进行了表征。氧化态样品的体相存在CuO、CuAl_2O_4,可能还有CuLa_2O_4物相,表面铜以 2价的形式存在。还原态样品的体相存在Cu~0、CuLa_2O_4,可能还有CuAlO_2,表面存在Cu~0、Ca~ 和少量的Cu~(2 )。CO容易在Cu~.、Cu_2O及CuAlO_2上形成分子态吸附;同时还存在HCO_3~-、CO_3~(2-)物种。NO容易吸附在CuO、CuAl_2O_4和CuLa_2O_4上,在Cu~0上可能解离吸附,还产生NO_3~-吸附物种。氧化态样品上,150℃以上,CO使Cu~(2 )还原为Cu~ 。还原态样品上,NO和CO交替吸附和共吸附实验证明低温出现了NO/Cu~(2 )和CO/Cu~ 的选择吸附现象。  相似文献   

12.
用密度泛函DFT方法对NiCO,Ni2CO(A)和Ni2CO(B)单配位络合物进行量子化学的计算.对CO在Ni金属催化剂上可能的吸附模式以及C≡O叁键活化的微观机理进行分析.发现CO在镍上有两种吸附方式:立式顶位吸附和卧式吸附;CO的活化程度与吸附方式密切相关,卧式吸附有利于CO活化.  相似文献   

13.
负载型Au/CdO CO低温催化氧化性能的研究   总被引:1,自引:0,他引:1  
用共沉淀法制备了负载型Au/CdO催化剂。考察了以氧化镉为载体金催化剂的制备条件及CO低温催化氧化活性。结果表明,焙绕温度、预处理条件对催化剂的活性有较大的影响,573K焙绕,空气预处理的催化剂活性最好。XRD、TPR、TPD结果表明,活性金高度分散在氧化镉载体上,氧化态的金是活性中心,CO和O2均吸酚在金上,其反应遵据Langmuir-Hinshelwood吸附机理。  相似文献   

14.
Co修饰碳纳米管促进的Cu-ZrO2催化剂上CO2加氢制甲醇   总被引:3,自引:1,他引:2  
利用微波助多元醇化学还原沉积法,制备一类Co修饰的多壁碳纳米管(CNT)基复合材料(y%Co/CNT),进而用其作为添加剂,制备共沉淀型y%Co/CNT促进的Cu-ZrO2催化剂,CuiZrj-x%(y%Co/CNT).Co对CNT的修饰明显地提高了该催化剂对CO2加氢制甲醇的催化活性.在Cu1Zr1-10%(4.3%Co/CNT)催化剂上,5.0 MPa,513 K,V(H2)/V(CO2)/V(N2)=69/23/8,GHSV=8 000 mL/(h·g)的反应条件下,CO2加氢的转化频率(TOF,即单位时间(s)内在单个表面活性金属Cu0位上CO2加氢转化的分子数)达2.89×10-3s-1,是相同条件下非促进的原基质Cu1Zr1和单纯CNT促进的对应物Cu1Zr1-10%CNT上这个值(2.36×10-3s-1和2.40×10-3s-1)分别的1.22和1.20倍;在CO2加氢产物中甲醇的C-基选择性为~92%,时空产率达176 mg/(h·g-cat.).催化剂的表征研究显示,Co修饰CNT促进的催化剂对H2优良的吸附活化性能对CO2加氢转化频率(TOF)的显著提高起着重要作用.  相似文献   

15.
催化工业中,残余物S原子不仅能使催化剂中毒,而且对CO分子的烷化反应有较大负面影响.在实验和理论研究方面,S原子对CO分子吸附性质的影响有不同的结论[1].例如,Zhang et al[2]理论研究结果表明:在Rh(111)表面S原子对CO分子吸附几乎没有影响,二者具有短程相互作用的本质.而Lahtinen et al.[1]对Co(0001)表面共吸附实验结果表明:S原子对CO分子吸附有一定的影响.  相似文献   

16.
采用密度泛函理论研究了CO在Pd/Pt(111)双金属表面的吸附性质.分别考虑了Pd原子全部取代表层Pt原子以及部分取代表层和次表层Pt原子的情况,分析了CO吸附在双金属不同表面的吸附能、C-O和C-Pt键长及振动频率.结果表明无论是在表层或者次表层加入Pd原子,相比CO吸附在干净Pt(111)表面情况,CO在双金属表面的吸附能几乎没有变化,而键长、频率也未见明显改变.这些吸附特性说明Pt催化剂的抗CO中毒性质主要依赖于最外层的Pt原子,临近的Pd原子可能会对其产生影响,但是未见明显变化.  相似文献   

17.
采用浸渍法制备了Ni/Sepiolite及Ni_Sm/Sepiolite催化剂 ,并测定了催化剂的CO和CO2 甲烷化活性。用TPR、H2 _TPD、CO化学吸附和XPS等手段研究了催化剂的表面性质。结果表明 ,Sm2 O3的加入提高了Ni/Sepio lite催化剂的CO和CO2 甲烷化活性 ,增加了催化剂中Ni的分散度、活性表面积 ,降低了电子结合能  相似文献   

18.
以不同焙烧温度的FeOx为载体制备了负载型Pt催化剂,考察了其在不同反应条件下的CO催化氧化性能及其抗H2 O和抗CO2性能.结果表明:在CO+O2条件下,Pt/FeOx-300催化剂(载体经300℃焙烧)性能最好,可能与催化剂中最高的Pt物种分散度有关;而Pt/FeOx-400催化剂中尽管Pt分散度较低,但其γ-Fe...  相似文献   

19.
以水热法成功制备了(110)面暴露的高活性多孔单晶CeO2空壳球催化剂样品,研究了其形成过程并提出了相应的形成机理.通过X射线衍射、透射电镜及低温氮气吸附/脱附等温线对催化剂结构进行了详细的表征,结果表明:该材料具有多孔结构以及较高的比表面积(259 m2/g).该多孔单晶CeO2催化剂在CO氧化转化中显示了较好的催化性能,其催化活性远高于商业化CeO2,这主要归结于其特殊的(110)高能面的暴露以及多孔单晶结构.  相似文献   

20.
碳纳米管促进Cu-基高效甲醇合成催化剂   总被引:8,自引:1,他引:8  
用自行制备的碳纳米管(CNTs)作为促进剂,研制出一类高效甲醇合成催化剂CuiZnjAlk-Ox-wt%CNTs,评价它们对CO/CO加氢成甲醇的催化活性,并与非CNTs促进的相应体系作对比研究。实现发现,碳纳米管能显著地促进甲醇合成反应活性的提高。在493K,5.0MPa,H2/CO/CO2/N2=62/30/5/3(V/V),GHSV=8000h^-1的反应条件下, Cu6Zn3Al1-Ox-12.5wt%CNTs催化剂上,甲醇的时空产率达1064mgh^-1(g-catal)^-1;产物中甲醇的选择性达98%以上;而在相同的制备和反应条件下、在非促进相应催化剂Cu6Zn3Al1-Ox上,甲醇的时空产率只达729mgh^-1(g-catal)-1.H2-TDP观测揭示,常压下在CNTs材料、以及CNTs促进催化剂CuiZnjAlk-Ox-wt%CNTs上,可以吸附存储着数量相当可观、在423-573K温度范围处于可逆吸、脱附的吸附氢物种。这一特性将有助于在甲醇合成反应条件下,营造较高氢稳态的表面氛围,以有利于提高表面加氢反应的速率;与此同时,很可能由于加氢活性的提高,使得碳纳米管促进催化剂上甲醇合成反应所需温度比非促进的相应体系下降15-25K,这在相当大程度上将有利于提高CO的平衡转化率和甲醇合的平衡产率。本文结果表明,碳纳米管对H2优异的吸附、活化及存储性能对于促进其所改进催化剂上甲醇合成反应活性的显著提高,起着关键作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号