首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Stuart FM  Lass-Evans S  Fitton JG  Ellam RM 《Nature》2003,424(6944):57-59
The high 3He/4He ratio of volcanic rocks thought to be derived from mantle plumes is taken as evidence for the existence of a mantle reservoir that has remained largely undegassed since the Earth's accretion. The helium isotope composition of this reservoir places constraints on the origin of volatiles within the Earth and on the evolution and structure of the Earth's mantle. Here we show that olivine phenocrysts in picritic basalts presumably derived from the proto-Iceland plume at Baffin Island, Canada, have the highest magmatic 3He/4He ratios yet recorded. A strong correlation between 3He/4He and 87Sr/86Sr, 143Nd/144Nd and trace element ratios demonstrate that the 3He-rich end-member is present in basalts that are derived from large-volume melts of depleted upper-mantle rocks. This reservoir is consistent with the recharging of depleted upper-mantle rocks by small volumes of primordial volatile-rich lower-mantle material at a thermal boundary layer between convectively isolated reservoirs. The highest 3He/4He basalts from Hawaii and Iceland plot on the observed mixing trend. This indicates that a 3He-recharged depleted mantle (HRDM) reservoir may be the principal source of high 3He/4He in mantle plumes, and may explain why the helium concentration of the 'plume' component in ocean island basalts is lower than that predicted for a two-layer, steady-state model of mantle structure.  相似文献   

2.
Gonnermann HM  Mukhopadhyay S 《Nature》2007,449(7165):1037-1040
Radioactive decay of uranium and thorium produces 4He, whereas 3He in the Earth's mantle is not produced by radioactive decay and was only incorporated during accretion-that is, it is primordial. 3He/4He ratios in many ocean-island basalts (OIBs) that erupt at hotspot volcanoes, such as Hawaii and Iceland, can be up to sixfold higher than in mid-ocean ridge basalts (MORBs). This is inferred to be the result of outgassing by melt production at mid-ocean ridges in conjunction with radiogenic ingrowth of 4He, which has led to a volatile-depleted upper mantle (MORB source) with low 3He concentrations and low 3He/4He ratios. Consequently, high 3He/4He ratios in OIBs are conventionally viewed as evidence for an undegassed, primitive mantle source, which is sampled by hot, buoyantly upwelling deep-mantle plumes. However, this conventional model provides no viable explanation of why helium concentrations and elemental ratios of He/Ne and He/Ar in OIBs are an order of magnitude lower than in MORBs. This has been described as the 'helium concentration paradox' and has contributed to a long-standing controversy about the structure and dynamics of the Earth's mantle. Here we show that the helium concentration paradox, as well as the full range of noble-gas concentrations observed in MORB and OIB glasses, can self-consistently be explained by disequilibrium open-system degassing of the erupting magma. We show that a higher CO2 content in OIBs than in MORBs leads to more extensive degassing of helium in OIB magmas and that noble gases in OIB lavas can be derived from a largely undegassed primitive mantle source.  相似文献   

3.
Class C  Goldstein SL 《Nature》2005,436(7054):1107-1112
Degassing of the Earth's mantle through magmatism results in the irreversible loss of helium to space, and high (3)He/(4)He ratios observed in oceanic basalts have been considered the main evidence for a 'primordial' undegassed deep mantle reservoir. Here we present a new global data compilation of ocean island basalts, representing upwelling 'plumes' from the deep mantle, and show that island groups with the highest primordial signal (high (3)He/(4)He ratios) have striking chemical and isotopic similarities to mid-ocean-ridge basalts. We interpret this as indicating a common history of mantle trace element depletion through magmatism. The high (3)He/(4)He in plumes may thus reflect incomplete degassing of the deep Earth during continent and ocean crust formation. We infer that differences between plumes and the upper-mantle source of ocean-ridge basalts reflect isolation of plume sources from the convecting mantle for approximately 1-2 Gyr. An undegassed, primordial reservoir in the mantle would therefore not be required, thus reconciling a long-standing contradiction in mantle dynamics.  相似文献   

4.
The Earth's mantle is isotopically heterogeneous on length scales ranging from centimetres to more than 10(4) kilometres. This heterogeneity originates from partial melt extraction and plate tectonic recycling, whereas stirring during mantle convection tends to reduce it. Here we show that mid-ocean ridge basalts from 2,000 km along the southeast Indian ridge (SEIR) display a bimodal hafnium isotopic distribution. This bimodality reveals the presence of ancient compositional striations (streaks) in the Indian Ocean upper mantle. The number density of the streaks is described by a Poisson distribution, with an average thickness of approximately 40 km. Such a distribution is anticipated for a well-stirred upper mantle, in which heterogeneity is continually introduced by plate tectonic recycling, and redistributed by viscous stretching and convective refolding.  相似文献   

5.
Parman SW  Kurz MD  Hart SR  Grove TL 《Nature》2005,437(7062):1140-1143
High 3He/4He ratios found in ocean island basalts are the main evidence for the existence of an undegassed mantle reservoir. However, models of helium isotope evolution depend critically on the chemical behaviour of helium during mantle melting. It is generally assumed that helium is strongly enriched in mantle melts relative to uranium and thorium, yet estimates of helium partitioning in mantle minerals have produced conflicting results. Here we present experimental measurements of helium solubility in olivine at atmospheric pressure. Natural and synthetic olivines were equilibrated with a 50% helium atmosphere and analysed by crushing in vacuo followed by melting, and yield a minimum olivine-melt partition coefficient of 0.0025 +/- 0.0005 (s.d.) and a maximum of 0.0060 +/- 0.0007 (s.d.). The results indicate that helium might be more compatible than uranium and thorium during mantle melting and that high 3He/4He ratios can be preserved in depleted residues of melting. A depleted source for high 3He/4He ocean island basalts would resolve the apparent discrepancy in the relative helium concentrations of ocean island and mid-ocean-ridge basalts.  相似文献   

6.
Mukhopadhyay S 《Nature》2012,486(7401):101-104
The isotopes (129)Xe, produced from the radioactive decay of extinct (129)I, and (136)Xe, produced from extinct (244)Pu and extant (238)U, have provided important constraints on early mantle outgassing and volatile loss from Earth. The low ratios of radiogenic to non-radiogenic xenon ((129)Xe/(130)Xe) in ocean island basalts (OIBs) compared with mid-ocean-ridge basalts (MORBs) have been used as evidence for the existence of a relatively undegassed primitive deep-mantle reservoir. However, the low (129)Xe/(130)Xe ratios in OIBs have also been attributed to mixing between subducted atmospheric Xe and MORB Xe, which obviates the need for a less degassed deep-mantle reservoir. Here I present new noble gas (He, Ne, Ar, Xe) measurements from an Icelandic OIB that reveal differences in elemental abundances and (20)Ne/(22)Ne ratios between the Iceland mantle plume and the MORB source. These observations show that the lower (129)Xe/(130)Xe ratios in OIBs are due to a lower I/Xe ratio in the OIB mantle source and cannot be explained solely by mixing atmospheric Xe with MORB-type Xe. Because (129)I became extinct about 100 million years after the formation of the Solar System, OIB and MORB mantle sources must have differentiated by 4.45 billion years ago and subsequent mixing must have been limited. The Iceland plume source also has a higher proportion of Pu- to U-derived fission Xe, requiring the plume source to be less degassed than MORBs, a conclusion that is independent of noble gas concentrations and the partitioning behaviour of the noble gases with respect to their radiogenic parents. Overall, these results show that Earth's mantle accreted volatiles from at least two separate sources and that neither the Moon-forming impact nor 4.45 billion years of mantle convection has erased the signature of Earth's heterogeneous accretion and early differentiation.  相似文献   

7.
Parman SW 《Nature》2007,446(7138):900-903
The timing of formation of the Earth's continental crust is the subject of a long-standing debate, with models ranging from early formation with little subsequent growth, to pulsed growth, to steadily increasing growth. But most models do agree that the continental crust was extracted from the mantle by partial melting. If so, such crustal extraction should have left a chemical fingerprint in the isotopic composition of the mantle. The subduction of oceanic crust and subsequent convective mixing, however, seems to have largely erased this record in most mantle isotopic systems (for example, strontium, neodymium and lead). In contrast, helium is not recycled into the mantle because it is volatile and degasses from erupted oceanic basalts. Therefore helium isotopes may potentially preserve a clearer record of mantle depletion than recycled isotopes. Here I show that the spectrum of 4He/3He ratios in ocean island basalts appears to preserve the mantle's depletion history, correlating closely with the ages of proposed continental growth pulses. The correlation independently predicts both the dominant 4He/3He peak found in modern mid-ocean-ridge basalts, as well as estimates of the initial 4He/3He ratio of the Earth. The correspondence between the ages of mantle depletion events and pulses of crustal production implies that the formation of the continental crust was indeed episodic and punctuated by large, potentially global, melting events. The proposed helium isotopic evolution model does not require a primitive, undegassed mantle reservoir, and therefore is consistent with whole mantle convection.  相似文献   

8.
Dixon JE  Leist L  Langmuir C  Schilling JG 《Nature》2002,420(6914):385-389
A substantial uncertainty in the Earth's global geochemical water cycle is the amount of water that enters the deep mantle through the subduction and recycling of hydrated oceanic lithosphere. Here we address the question of recycling of water into the deep mantle by characterizing the volatile contents of different mantle components as sampled by ocean island basalts and mid-ocean-ridge basalts. Although all mantle plume (ocean island) basalts seem to contain more water than mid-ocean-ridge basalts, we demonstrate that basalts associated with mantle plume components containing subducted lithosphere--'enriched-mantle' or 'EM-type' basalts--contain less water than those associated with a common mantle source. We interpret this depletion as indicating that water is extracted from the lithosphere during the subduction process, with greater than 92 per cent efficiency.  相似文献   

9.
Whole-mantle convection and the transition-zone water filter   总被引:8,自引:0,他引:8  
Bercovici D  Karato S 《Nature》2003,425(6953):39-44
Because of their distinct chemical signatures, ocean-island and mid-ocean-ridge basalts are traditionally inferred to arise from separate, isolated reservoirs in the Earth's mantle. Such mantle reservoir models, however, typically satisfy geochemical constraints, but not geophysical observations. Here we propose an alternative hypothesis that, rather than being divided into isolated reservoirs, the mantle is filtered at the 410-km-deep discontinuity. We propose that, as the ascending ambient mantle (forced up by the downward flux of subducting slabs) rises out of the high-water-solubility transition zone (between the 660 km and 410 km discontinuities) into the low-solubility upper mantle above 410 km, it undergoes dehydration-induced partial melting that filters out incompatible elements. The filtered, dry and depleted solid phase continues to rise to become the source material for mid-ocean-ridge basalts. The wet, enriched melt residue may be denser than the surrounding solid and accordingly trapped at the 410 km boundary until slab entrainment returns it to the deeper mantle. The filter could be suppressed for both mantle plumes (which therefore generate wetter and more enriched ocean-island basalts) as well as the hotter Archaean mantle (thereby allowing for early production of enriched continental crust). We propose that the transition-zone water-filter model can explain many geochemical observations while avoiding the major pitfalls of invoking isolated mantle reservoirs.  相似文献   

10.
Following the researches of helium isotopic compositions in mantle-derived xenoliths in eastern China,this study reported noble gas abundances and isotopic compositions of mantle-derived xenoliths from Kuandian of Liaoning Province, Huinan of Jilin Province and Hannuoba of Hebei Province. Compared with the middle ocean ridge basalt (MORB) and other continental areas, mantle-derived xenoliths in NE China are characterized by slightly low noble gas abundances, 3He/4He equivalent to or lower than that of MORB, 40Ar/36Ar lower than that of MORB, 38Ar/36Ar and Ne-Kr-Xe isotopic ratios equivalent to those of atmosphere. These results indicate the heterogeneity of subcontinentai lithospheric mantle beneath northeastern China, that is, a MORB reservoir-like mantle beneath Kuandian and an enriched/metasomatized mantle beneath Huinan. Low 40Ar/36Ar ratios in the three studied areas may imply that a subducted atmospheric component has been preserved in the subcontinental lithospheric mantle.``  相似文献   

11.
Humler E  Besse J 《Nature》2002,419(6907):607-609
To fully understand the structure and dynamics of the Earth's convecting mantle, the origins of temperature variations within the mantle need to be resolved. Different hypotheses have been proposed to account for these temperature variations: for example, heat coming from the decay of radioactive elements or heat flowing out of the Earth's core. In addition, theoretical studies suggest that the thermal properties of continental masses can affect mantle convection, but quantitative data that could allow us to test these models are scarce. To address this latter problem, we have examined the chemistry of mid-ocean-ridge basalt--which reflects the temperature of the source mantle--as a function of the distance of the ridge from the closest continental margin. No correlation is observed for oceanic ridges close to subduction zones or hotspots; subduction zones probably inhibit thermal transfer between the mantle beneath continents and ocean, whereas hotspots influence the major-element chemistry of ridge basalts, which makes their interpretation with respect to mantle temperature more difficult. However, we do observe a significant correlation for mid-oceanic basalts from the Atlantic and Indian oceans. From this, we conclude that the location of continental masses relative to active ridges influences the large-scale thermal structure of the mantle and we estimate that the mantle cools by 0.05 to 0.1 degrees C per kilometre from the continental margins.  相似文献   

12.
The compositional differences between mid-ocean-ridge and ocean-island basalts place important constraints on the form of mantle convection. Also, it is thought that the scale and nature of heterogeneities within plumes and the degree to which heterogeneous material endures within the mantle might be reflected in spatial variations of basalt composition observed at the Earth's surface. Here we report osmium isotope data on lavas from a transect across the Azores archipelago which vary in a symmetrical pattern across what is thought to be a mantle plume. Many of the lavas from the centre of the plume have lower 187Os/188Os ratios than most ocean-island basalts and some extend to subchondritic 187Os/188Os ratios-lower than any yet reported from ocean-island basalts. These low ratios require derivation from a depleted, harzburgitic mantle, consistent with the low-iron signature of the Azores plume. Rhenium-depletion model ages extend to 2.5 Gyr, and we infer that the osmium isotope signature is unlikely to be derived from Iberian subcontinental lithospheric mantle. Instead, we interpret the osmium isotope signature as having a deep origin and infer that it may be recycled, Archaean oceanic mantle lithosphere that has delaminated from its overlying oceanic crust. If correct, our data provide evidence for deep mantle subduction and storage of oceanic mantle lithosphere during the Archaean era.  相似文献   

13.
Elliott T  Thomas A  Jeffcoate A  Niu Y 《Nature》2006,443(7111):565-568
'Recycled' crustal materials, returned from the Earth's surface to the mantle by subduction, have long been invoked to explain compositional heterogeneity in the upper mantle. Yet increasingly, problems have been noted with this model. The debate can be definitively addressed using stable isotope ratios, which should only significantly vary in primitive, mantle-derived materials as a consequence of recycling. Here we present data showing a notable range in lithium isotope ratios in basalts from the East Pacific Rise, which correlate with traditional indices of mantle heterogeneity (for example, 143Nd/144Nd ratios). Such co-variations of stable and radiogenic isotopes in melts from a normal ridge segment provide critical evidence for the importance of recycled material in generating chemical heterogeneity in the upper mantle. Contrary to many models, however, the elevated lithium isotope ratios of the 'enriched' East Pacific Rise lavas imply that subducted ocean crust is not the agent of enrichment. Instead, we suggest that fluid-modified mantle, which is enriched during residency in a subduction zone, is mixed back into the upper mantle to cause compositional variability.  相似文献   

14.
Ocean island basalts are generally thought to be the surface expression of mantle plumes, but the nature of the components in the source regions of such mantle plumes is a subject of long-standing debate. The lavas erupted at Hawaii have attracted particular attention, as it has been proposed that coupled 186Os and 187Os anomalies reflect interaction with the Earth's metallic core. It has recently been suggested, however, that such variations could also result from addition of oceanic ferromanganese sediments to the mantle source of these lavas. Here we show that Hawaiian picrites with osmium isotope anomalies also exhibit pronounced thallium isotope variations, which are coupled with caesium/thallium ratios that extend to values much lower than commonly observed for mantle-derived rocks. This correlation cannot be created by admixing of core material, and is best explained by the addition of ferromanganese sediments into the Hawaii mantle source region. However, the lack of correlation between thallium and osmium isotopes and the high thallium/osmium ratios of ferromanganese sediments preclude a sedimentary origin for the osmium isotope anomalies, and leaves core-mantle interaction as a viable explanation for the osmium isotope variations of the Hawaiian picrites.  相似文献   

15.
A crystallizing dense magma ocean at the base of the Earth's mantle   总被引:4,自引:0,他引:4  
Labrosse S  Hernlund JW  Coltice N 《Nature》2007,450(7171):866-869
The distribution of geochemical species in the Earth's interior is largely controlled by fractional melting and crystallization processes that are intimately linked to the thermal state and evolution of the mantle. The existence of patches of dense partial melt at the base of the Earth's mantle, together with estimates of melting temperatures for deep mantle phases and the amount of cooling of the underlying core required to maintain a geodynamo throughout much of the Earth's history, suggest that more extensive deep melting occurred in the past. Here we show that a stable layer of dense melt formed at the base of the mantle early in the Earth's history would have undergone slow fractional crystallization, and would be an ideal candidate for an unsampled geochemical reservoir hosting a variety of incompatible species (most notably the missing budget of heat-producing elements) for an initial basal magma ocean thickness of about 1,000 km. Differences in 142Nd/144Nd ratios between chondrites and terrestrial rocks can be explained by fractional crystallization with a decay timescale of the order of 1 Gyr. These combined constraints yield thermal evolution models in which radiogenic heat production and latent heat exchange prevent early cooling of the core and possibly delay the onset of the geodynamo to 3.4-4 Gyr ago.  相似文献   

16.
The origin of the isotopic signature of Indian mid-ocean ridge basalts has remained enigmatic, because the geochemical composition of these basalts is consistent either with pollution from recycled, ancient altered oceanic crust and sediments, or with ancient continental crust or lithosphere. The radiogenic isotopic signature may therefore be the result of contamination of the upper mantle by plumes containing recycled altered ancient oceanic crust and sediments, detachment and dispersal of continental material into the shallow mantle during rifting and breakup of Gondwana, or contamination of the upper mantle by ancient subduction processes. The identification of a process operating on a scale large enough to affect major portions of the Indian mid-ocean ridge basalt source region has been a long-standing problem. Here we present hafnium and lead isotope data from across the Indian-Pacific mantle boundary at the Australian-Antarctic discordance region of the Southeast Indian Ridge, which demonstrate that the Pacific and Indian upper mantle basalt source domains were each affected by different mechanisms. We infer that the Indian upper-mantle isotope signature in this region is affected mainly by lower continental crust entrained during Gondwana rifting, whereas the isotope signature of the Pacific upper mantle is influenced predominantly by ocean floor subduction-related processes.  相似文献   

17.
The return of subducted continental crust in Samoan lavas   总被引:1,自引:0,他引:1  
Substantial quantities of terrigenous sediments are known to enter the mantle at subduction zones, but little is known about their fate in the mantle. Subducted sediment may be entrained in buoyantly upwelling plumes and returned to the Earth's surface at hotspots, but the proportion of recycled sediment in the mantle is small, and clear examples of recycled sediment in hotspot lavas are rare. Here we report remarkably enriched 87Sr/86Sr and 143Nd/144Nd isotope signatures in Samoan lavas from three dredge locations on the underwater flanks of Savai'i island, Western Samoa. The submarine Savai'i lavas represent the most extreme 87Sr/86Sr isotope compositions reported for ocean island basalts to date. The data are consistent with the presence of a recycled sediment component (with a composition similar to the upper continental crust) in the Samoan mantle. Trace-element data show affinities similar to those of the upper continental crust--including exceptionally low Ce/Pb and Nb/U ratios--that complement the enriched 87Sr/86Sr and 143Nd/144Nd isotope signatures. The geochemical evidence from these Samoan lavas significantly redefines the composition of the EM2 (enriched mantle 2; ref. 9) mantle endmember, and points to the presence of an ancient recycled upper continental crust component in the Samoan mantle plume.  相似文献   

18.
Turner S  Tonarini S  Bindeman I  Leeman WP  Schaefer BF 《Nature》2007,447(7145):702-705
Evidence for the deep recycling of surficial materials through the Earth's mantle and their antiquity has long been sought to understand the role of subducting plates and plumes in mantle convection. Radiogenic isotope evidence for such recycling remains equivocal because the age and location of parent-daughter fractionation are not known. Conversely, while stable isotopes can provide irrefutable evidence for low-temperature fractionation, their range in most unaltered oceanic basalts is limited and the age of any variation is unconstrained. Here we show that delta(18)O ratios in basalts from the Azores are often lower than in pristine mantle. This, combined with increased Nb/B ratios and a large range in delta(11)B ratios, provides compelling evidence for the recycling of materials that had undergone fractionation near the Earth's surface. Moreover, delta(11)B is negatively correlated with (187)Os/(188)Os ratios, which extend to subchondritic values, constraining the age of the high Nb/B, (11)B-enriched endmember to be more than 2.5 billion years (Gyr) old. We infer this component to be melt- and fluid-depleted lithospheric mantle from a subducted oceanic plate, whereas other Azores basalts contain a contribution from approximately 3-Gyr-old melt-enriched basalt. We conclude that both components are most probably derived from an Archaean oceanic plate that was subducted, arguably into the deep mantle, where it was stored until thermal buoyancy caused it to rise beneath the Azores islands approximately 3 Gyr later.  相似文献   

19.
Up to 10 per cent of the ocean floor consists of plateaux--regions of unusually thick oceanic crust thought to be formed by the heads of mantle plumes. Given the ubiquitous presence of recycled oceanic crust in the mantle source of hotspot basalts, it follows that plateau material should also be an important mantle constituent. Here we show that the geochemistry of the Pleistocene basalts from Logudoro, Sardinia, is compatible with the remelting of ancient ocean plateau material that has been recycled into the mantle. The Sr, Nd and Hf isotope compositions of these basalts do not show the signature of pelagic sediments. The basalts' low CaO/Al2O3 and Ce/Pb ratios, their unradiogenic 206Pb and 208Pb, and their Sr, Ba, Eu and Pb excesses indicate that their mantle source contains ancient gabbros formed initially by plagioclase accumulation, typical of plateau material. Also, the high Th/U ratios of the mantle source resemble those of plume magmas. Geochemically, the Logudoro basalts resemble those from Pitcairn Island, which contain the controversial EM-1 component that has been interpreted as arising from a mantle source sprinkled with remains of pelagic sediments. We argue, instead, that the EM-1 source from these two localities is essentially free of sedimentary material, the geochemical characteristics of these lavas being better explained by the presence of recycled oceanic plateaux. The storage of plume heads in the deep mantle through time offers a convenient explanation for the persistence of chemical and mineralogical layering in the mantle.  相似文献   

20.
Mantle segmentation along the Oman ophiolite fossil mid-ocean ridge   总被引:1,自引:0,他引:1  
Le Mée L  Girardeau J  Monnier C 《Nature》2004,432(7014):167-172
It has been difficult to relate the segmentation of mid-ocean ridges to processes occurring in the Earth's underlying mantle, as the mantle is rarely sampled directly and chemical variations observed in lavas at the surface are heavily influenced by details of their production as melt extracted from the mantle. Our understanding of such mantle processes has therefore relied on the analysis of pieces of fossil oceanic lithosphere now exposed at the Earth's surface, known as ophiolites. Here we present the phase chemistry and whole-rock major- and trace-element contents of 174 samples of the mantle collected along over 400 km of the Oman Sultanate ophiolite. We show that, when analysed along the fossil ridge, variations of elemental ratios sensitive to the melting process define a three-dimensional geometry of mantle upwellings, which can be related to the segmentation observed in modern mid-ocean ridge environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号