首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Of the numerous classes of elements involved in modulating eukaryotic chromosome structure and function, chromatin insulators arguably remain the most poorly understood in their contribution to these processes in vivo. Indeed, our view of chromatin insulators has evolved dramatically since their chromatin boundary and enhancer blocking properties were elucidated roughly a quarter of a century ago as a result of recent genome-wide, high-throughput methods better suited to probing the role of these elements in their native genomic contexts. The overall theme that has emerged from these studies is that chromatin insulators function as general facilitators of higher-order chromatin loop structures that exert both physical and functional constraints on the genome. In this review, we summarize the result of recent work that supports this idea as well as a number of other studies linking these elements to a diverse array of nuclear processes, suggesting that chromatin insulators exert master control over genome organization and behavior.  相似文献   

2.
3.
4.
5.
6.
Resumen En los ofídios, las hembras presentan, en los núcleos interfásicos teñidos por la quinacrina, un corpúsculo fluorescente brillante. Este coincide con él condensado heteropicnótico de preparaciones comunes y corresponde al cromosoma W. Sin enbargo, él W no presenta fluorescencia intensa en las metafases somaticas.

This work was supported by the Brazilian CNPq, FAPESP and FPIB.  相似文献   

7.
8.
9.
Zusammenfassung Aus Virus-infizierten Zellen isoliertes Chromatin wurde mit dem Erythrocytenchromatin verglichen. Die durch Infektion oder Differenzierung verlorene Kapazität des Chromatins der RNS-Syntheseunterstützung wird durch Entfernung eines Teiles des Proteins wieder hergestellt.

This work was supported by the Cancer Research Fund of the University of California and by U.S.P.H.S. Grant CA-08192-1.  相似文献   

10.
11.
12.
13.
Nuclear calcium signalling   总被引:9,自引:0,他引:9  
The topic of nuclear Ca2+ signalling is beset by discrepant observations of substantial nuclear/cytoplasmic gradients. The reasons why some labs have recorded such gradients, whilst other workers see equilibration of Ca2+(cyt) and Ca2+(nuc) using the same cells and techniques, is unexplained. Furthermore, how such gradients could arise across the NE that possesses many highly-conductive NPCs is a mystery. Although nuclei may have the capacity to be autonomous signalling entities, with functional Ca2+ release channels and an inositide cycle, the balance of evidence suggests that Ca2+ release on the inner NE does not occur during physiological stimulation. Our work suggests that elementary Ca2+ release events originating in the cytoplasm can give rise to Ca2+ signals without causing elevation of the bulk cytoplasm. Clearly, the many Ca2+ signalling mechanisms that may impinge on Ca2+(nuc) will remain a topic of controversy and debate for some time.  相似文献   

14.
Nuclear transport mechanisms   总被引:7,自引:0,他引:7  
The term nuclear transport, refers to the movement of a large variety of macromolecules both into and out of the nucleus. Transport must be extremely selective, yet also very efficient. A single type of channel, the nuclear pore complex, mediates all movement across the nuclear envelope. Selectivity is achieved through the use of families of soluble factors that target substrates for import and export and deliver them to their appropriate intracellular destinations. We now have a fairly detailed understanding of the basic mechanisms of protein import into the nucleus. Many of these same principles can be applied to protein export and perhaps RNA export. This review will summarize the current status of what is known about various transport pathways and highlight the questions that remain to be answered.  相似文献   

15.
16.
17.
18.
Summary Condensed chromatin shows globules of 300 Å formed by 8 to 10 nucleosomes. Each globule might be an uncoiled turn of a supercoil. This supercoil forms major coils along the fibre.This work was supported by grants from Brazilian CNPq, FAPESP and FEDIB.We thank Dr A. Brunner Jr for the permission to use the electron microscope.  相似文献   

19.
How metabolism and epigenetics are molecularly linked and regulate each other is poorly understood. In this review, we will discuss the role of direct metabolite-binding to chromatin components and modifiers as a possible regulatory mechanism. We will focus on globular macro domains, which are evolutionarily highly conserved protein folds that can recognize NAD+-derived metabolites. Macro domains are found in histone variants, histone modifiers, and a chromatin remodeler among other proteins. Here we summarize the macro domain-containing chromatin proteins and the enzymes that generate relevant metabolites. Focusing on the histone variant macroH2A, we further discuss possible implications of metabolite binding for chromatin function.  相似文献   

20.
SET domain proteins modulate chromatin domains in eu- and heterochromatin   总被引:1,自引:0,他引:1  
The SET domain is a 130-amino acid, evolutionarily conserved sequence motif present in chromosomal proteins that function in modulating gene activities from yeast to mammals. Initially identified as members of the Polycomb- and trithorax-group (Pc-G and trx-G) gene families, which are required to maintain expression boundaries of homeotic selector (HOM-C) genes, SET domain proteins are also involved in position-effect-variegation (PEV), telomeric and centromeric gene silencing, and possibly in determining chromosome architecture. These observations implicate SET domain proteins as multifunctional chromatin regulators with activities in both eu- and heterochromatin – a role consistent with their modular structure, which combines the SET domain with additional sequence motifs of either a cysteine-rich region/zinc-finger type or the chromo domain. Multiple functions for chromatin regulators are not restricted to the SET protein family, since many trx-G (but only very few Pc-G) genes are also modifiers of PEV. Together, these data establish a model in which the modulation of chromatin domains is mechanistically linked with the regulation of key developmental loci (e.g. HOM-C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号