首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
分析了一个应用于测量的16位精度开关电容Δ-Σ模数调制器.该调制器采用3阶1位单环包含局部谐振器的前馈结构,在保证其具有较大的输入信号允许范围的同时引入零点优化来提高信号/噪声失真比.整体电路使用TSMC 0.35μm混合信号CMOS工艺,采用Spectre进行仿真.结果表明,在信号输入带宽为1 kHz、超采样率128条件下,调制器的动态输入范围为102 dB;在信号为-3.5 dB满幅输入时,其最大信号/噪声失真比为97.84 dB.此外,在1.5 V供电电压下,调制器的功耗仅为88μW,表现出较好的低功耗高精度性能.  相似文献   

2.
基于无锡上华0.5μm 2层多晶硅3层金属(2P3M)N阱CMOS工艺,在3.3V电源电压下,采用双二阶基本节,设计了一种截止频率为1kHz的低失调、低通开关电容滤波器,并采用相关双采样技术(CDS)及优化的开关组合,削弱了器件非理想特性的影响.仿真结果表明,采用CDS技术及优化的开关组合使开关电容滤波器的直流失调电压从2mV降低至23μV.提高了信号处理系统的精度.  相似文献   

3.
 采用0.13μm CMOS工艺设计并实现了一个开关电容2阶ΔΣ调制器.该调制器能够将一个中心频率为455 kHz,带宽为10kHz的调幅信号转换成具有10位分辨率、信噪比为62dB的1位编码信号.在设计运算放大器时,充分考虑了短沟道晶体管设计的一些特殊要求,特别是考虑了MOS场效应管的输出电导gd这个非常敏感的设计参数.所设计电路的芯片的面积为260μm×370μm,工作电压为1.2 V.与其它的同类调制器相比,由于采用0.13μm CMOS工艺进行设计,因而芯片面积小,工作电压低.  相似文献   

4.
设计了一个应用于0.9 V电源电压,精度达16 bit,功耗仅为300μW的音频ΣΔ调制器.调制器采用了前馈单环三阶结构,以降低整个调制器的功耗;并采用时钟自举电路以实现低电压下CMOS开关的良好导通.芯片采用SMIC 0.18μm一层多晶六层金属工艺进行设计和仿真,芯片核心部分面积为0.7 mm×0.66 mm.后仿真结果显示该调制器在20 kHz的音频信号带宽范围内信噪比可达93 dB.  相似文献   

5.
设计了一种应用于助听器的4阶连续时间单环单比特量化ΣΔ调制器.采用有源RC积分器实现连续时间前馈环路滤波.通过采用2级AB类放大器同时实现了低电压下积分器的低功耗和大电压输出摆幅.提出了用固定延时锁存比较结果的方法,消除了由量化器的信号相关延时带来的负面影响.调制器采用中芯国际0.13μm工艺,通过仿真显示,在20kHz信号带宽和128倍过采样率条件下,调制器的信号噪声失真比可以达到105.5dB.在1V电源电压下,调制器功耗仅为110μW.  相似文献   

6.
设计一个内部采用4位量化器的二阶单环多位sigma-delta调制器。为解决反馈回路中多位DAC元件失配导致的信号谐波失真问题,该sigma-delta调制器采用CLA(Clocked averaging algorithm)技术提高多位DAC的线性度,同时采用动态频率补偿技术增加积分器的稳定性。调制器信号频率带宽为24kHz,过采样率(OSR)为128,采用尺寸为0.5μm的CMOS工艺,工作电压为5V。测试结果表明:在输入信号频率为20kHz时,信噪比(SNR)达103dB,调制器输出信号无杂波动态范围为102dB;整个调制器功耗为87mW,芯片总面积为2.56mm2。  相似文献   

7.
设计了一种应用于温度传感芯片的全差分开关电容积分器.在温度传感芯片中,Δ-Σ调制器接收温度传感模块输出电压信号,并将模拟的电压信号转换成对应的数字信号.全差分开关电容积分器是Δ-Σ调制器中最核心的元件,它把接收到的温度传感器模块输出的模拟信号转换为数字信号.在开关电容积分器的实际设计中,存在MOS开关的导通电阻和电荷注入、时钟溃通、采样尖峰等非理想因素.本文对这些非理想因素做了详细的分析,设计了一种全差分的开关电容积分器,可以抵消开关电容中电荷注入和时钟溃通带来的电压误差.同时,本文设计了一种全差分共源共栅放大器,可以很好的满足积分器的要求,从而提高整个系统的性能.  相似文献   

8.
设计并实现了低功耗的欠采样保持(under-sampling and hold)电路,该电路可应用在模数转换器的前端.该电路选取全差分的电荷传递式开关电容结构,具有欠采样功能的高速自举开关及连续时间共模负反馈结构的两级运算放大器.该电路基于SMIC CMOS 0.18μm 1P6M工艺绘制,测试结果表明,在电源电压为3.3 V,采样频率fs为2 MHz,信号频率fa为2.01 MHz时,总功耗约为1 mW,等效信号频率fa'为10 kHz的信噪失真比RSND为47 dB.该电路可以广泛应用于频移键控调制系统中.  相似文献   

9.
采样保持电路作为流水线模数转换器中的重要单元一直是高速高分辨率模数转换器研究设计者十分关注的内容.文章介绍了基于CMOS 0.6μm工艺的流水线模数转换器前端采样保持电路以及运放电路的设计仿真.该电路采用电容下极板采样、折叠式共源共栅技术,有效地消除了开关管的电荷注入效应、时钟馈通效应引起的采样信号的误差,提高了采样电路的线性度,节省了芯片面积,降低了功耗.  相似文献   

10.
针对传统级联型ΔΣ调制器中运算放大器(OTA)增益要求过高和功耗过大的问题,提出了一种用反相器实现积分的级间反馈级联型低压低功耗调制器。该调制器采用带有级间反馈的级联型结构,从系统上消除了传统级联结构中传递函数失配的风险,大大降低了模拟积分器的设计要求,不再需要高电源电压、高增益的OTA实现积分来保证传递函数的精确性。此外,采用低增益、低功耗的C类反相器实现积分功能,节约了芯片功耗和面积,用0.5μm互补型金属氧化物半导体(CMOS)工艺设计了一个两级级联的四阶ΔΣ调制器,仿真结果表明,所设计的调制器版图核心面积仅为858μm×525μm,调制器可工作在低至1.4V的电源电压下,在信号带宽为3.9kHz、过采样率为128的情况下,信噪失真比(SNDR)最大为99.8dB,平均电流消耗仅为58.6μA。该调制器适用于低频信号的高精度处理,具有低压低功耗优势。  相似文献   

11.
基于180nm CMOS工艺,设计了一种2 bit/cycle结构的8 bit、100 MS/s逐次逼近模数转换器(SAR ADC). 采用两个DAC电容阵列SIG_DAC、REF_DAC实现了2 bit/cycle量化,其中SIG_DAC采用上极板采样大大减少了电容数目,分裂电容式结构和优化的异步SAR逻辑提高了ADC的转换速度. 应用一种噪声整形技术,有效提高了过采样时ADC的信噪失真比(SNDR). 在1.8 V电源电压和100 MS/s采样率条件下,未加入噪声整形时,仿真得到ADC的SNDR为46.22 dB,加入噪声整形后,过采样率为10时,仿真得到的SNDR为57.49 dB,提高了11.27 dB,ADC的有效位数提高了约1.88 bit,达到9.26 bit.   相似文献   

12.
针对柔性压阻式压力传感器输出信号数字化对功耗和面积的要求,设计了一款低功耗逐次逼近型(SAR)模数转换器(ADC).电路采用了基于GND采样的单调开关切换方案降低DAC开关能耗,并使用了分段电容阵列,在进一步降低切换功耗的同时,还缩减了整体电路的面积开销.此外,电路还设计了两级预放大器来降低动态比较器的噪声和失调,采用动态元件匹配技术(DEM)来提高ADC的线性度.在 1P6M CMOS工艺下实现了该ADC的电路设计和版图绘制,芯片内核面积约,在1.8 V的电源电压下功耗为.流片测试结果显示:SAR ADC在250 kHz的采样率下以11 bit输出时,信噪失真比SNDR为65.0 dB,有效位数ENOB为10.51 bit.  相似文献   

13.
提出了一种适于MEMS电容加速度计读出电路带宽可调的低通滤波器,带宽调节范围为100Hz~8kHz。信号频率低于500Hz时选用开关电容低通滤波器,高于500Hz的信号则由连续时间低通滤波器来处理。该低通滤波器采用1.2μm的2P2M的N-阱CMOS工艺实现。设计中分析并解决了因时钟信号引起的制约开关性能的因素:优化的开关时序消除了电荷注入引起的非线性;时钟馈通敏感节点增加虚拟开关抵消了耦合电荷;高PSRR共源共栅折叠式差分输入结构,有效地抑制了来自电源的干扰,改善了电路的性能。  相似文献   

14.
提出一个改进的二阶三位噪声耦合过采样调制器, 它将量化器前所有的加法运算移动到第2个积分器的前面, 并通过引入反馈通道和延时输入信号, 使反馈数模转换器的苛刻时序得到缓解。此调制器在0.35m CMOS工艺下设计并生产, 整个调制器使用了两个有源模块。在100 kHz信号带宽和12.8 MHz时钟频率下, 完成了86.4 dB的SNDR和95.8 dB的DR, 3.3 V电源电压下, 消耗9.84 mW。此调制器能满足GSM系统的需求。  相似文献   

15.
提出一种新型的应用于数字中频接收机的开关电容带通△∑调制器架构,该架构基于前馈结构,利用双采样可调谐谐振器,噪声耦合技术和4比特量化器,使调制器在GSM,WCDMA和TD-SCDMA标准下都能达到高的信噪比和动态范围,3个标准的带宽分别为200 kHz,5 MHz和1.6 MHz.后仿结果显示,在0.13 μm工艺下GSM/WCDMA/TD-SCDMA的信号噪声失真比分别为84.73/59.89/65.24 dB,动态范围的仿真结果分别为87,72和82 dB.电路的采样频率为100 M.Hz,工作电压为1.2V,总功耗为16.1 mW.  相似文献   

16.
设计了一款适用于单芯片集成真空传感器的10位SAR型A/D转换器.轨至轨比较器通过并联两个互补的子比较器实现.信号采样时,比较器进行失调消除,提高电路的转换精度.电路采用0.5μm2P3M标准CMOS工艺制作.系统时钟频率为20MHz,输入电压范围为0~3V.在1.25MS/s采样率和4.6kHz信号输入频率下,电路的信噪比为56.4dB,无杂散动态范围为69.2dB.芯片面积为2mm2.3V电源电压供电时,功耗为3.1mW.其性能已达到高线性度和低功耗的设计要求.  相似文献   

17.
为了在电源管理芯片中完成高精度、低功耗的模数转换,提出了1种自给时钟的增量型Sigma-Delta模数转换器(ADC).该ADC由2阶Sigma-Delta调制器结构组成,使用基于过零检测的开关电容积分器代替了基于运算放大器的开关电容积分器,又通过2阶积分器电路的相互触发产生自给时钟,从而无需外部提供时序信号.该ADC使用0.5μm CMOS工艺,在运行500个周期时可以获得的信号噪声失真比(SNDR)为90.06 d B,有效精度为14.66位,转换时间小于330μs,在5 V供电下功耗为0.317 m W.在保持Sigma-Delta ADC较高精度的同时,通过采用基于零点检测的电路减少了所需的外围电路,从而节省了面积.  相似文献   

18.
采用0.13μmCMOS工艺设计并实现了一个开关电容2阶Δ∑调制器,该调制器能够将一个中心频率为455kHz,带宽为10kHz的调幅信号转换成具有10位分辨率、信噪比为62dB的1位编码信号.在设计运算放大器时,充分考虑了短沟道晶体管设计的一些特殊要求,特别是考虑了MOS场效应管的输出电导gd这个非常敏感的设计参数.所设计电路的芯片的面积为260μm×370μm,工作电压为1.2V.与其它的同类调制器相比,由于采用0.13μmCMOS工艺进行设计,因而芯片面积小,工作电压低.  相似文献   

19.
为了实现了电容式传感器和其他信号处理电路之间的接口,提出了一种电容式传感器接口电路。该接口电路基于开关电容技术,采用采样电荷结构,并在其前端读出电路采用采样开关噪声消除技术,在0.35μm 2P-4 M CMOS标准工艺下设计并流片实现,且特别适用于开环或力平衡闭环电容式微加速度计和振动角速度陀螺仪应用。测试结果表明:在1 MHz的采样时钟下,该接口电路取得了约5.35 aF的电容分辨率和约0.173 aF.Hz-1/2的噪声基底。  相似文献   

20.
采用流水线结构完成了一个10位精度150MHz采样率的模数转换器的设计.通过采用动态比较器降低电路的功耗.在采样保持电路中使用一种新颖的自举开关,可减小失真,使得电路在输入信号频率很高时仍具有很好的动态性能.芯片采用台积电(TSMC)0.25μm CMOS工艺,其有效面积为2.8mm2.测试结果表明,最大积分非线性误差和微分非线性误差分别为1.15LSB和0.75LSB;在150MHz采样率下,对80MHz信号转换的无杂散动态范围为52.4dB;功耗为97mW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号