首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S?V(G)是G的一个顶点集且|S|≥k,其中2≤k≤n.连接S的树T叫作斯坦纳树.两棵斯坦纳树T1和T2称为内部不交的,当且仅当它们满足E(T1)∩E(T2)=?和V(T1)∩V(T2)=S.令κG(S)是G内部不交的斯坦纳树的最大数目,κk(G)=min{κG(S)∶S?V(G),|S|=k}定义为G的广义k-连通度.很显然,当|S|=2时,广义2-连通度κ2(G)就是经典连通度κ(G).因此广义连通度是经典连通度的推广.主要讨论泡序图Bn的广义4-连通度κ4(Bn).得到的结论是当n≥3时,κ4(Bn)=n-2.  相似文献   

2.
设F?E (G)为图G=(V,E)的一个边集,如果G-F不连通且G-F的每一个连通分支都至少有k个顶点,F就称为图G的一个k-限制性边割.图G的k-限制边连通度是图G的最小k-限制性边割的基数,记为λk(G).限制性边连通度是衡量网络可靠性的重要参数之一.证明了在2≤k≤n,h≤n/2的情况下,一类特殊图—蜻蜓网络D(n,h)的k-限制边连通度是■  相似文献   

3.
对于度k( ≥ 2 )的点可迁连通图的限制边连通度λ′,已知k≤λ′≤ 2k- 2 ,且λ′的界可以达到 .在此基础上 ,对度为k的点可迁图G进一步给出了满足λ′(G) =k的两个充要条件 .接着 ,对任意的连通图G0 证明了λ′(K2 ×G0 ) =min{2δ (G0 ) ,2λ′(G0 ) ,v(G0 ) }.最后证明了对任意满足 0≤s≤k- 3的整数s,存在度为k的点可迁连通图G满足λ′(G)=k s当且仅当k为奇数或者s为偶数  相似文献   

4.
g-外边连通度是衡量大型互连网络可靠性和容错性的一个重要参数.设G是连通图且g是非负整数,如果G中存在某种边子集使得G删除这种边子集后得到的图不连通并且每个分支至少有g+1个点,则所有这种边子集中基数最小的边子集的基数称为图G的g-外边连通度,记作λg(G).由定义可知λ0(G)=λ(G)并且λ1(G)是图G的超边连通度.n维折叠交叉立方体FCQn是由交叉立方体CQn增加2n-1条边后所得.证明了λ2(FCQn)=3n-1,n≥5.  相似文献   

5.
一个图G的限制边连通度是使得G-F不连通且每个分支至少含有2个顶点的最小边子集F的基数.文章中,我们证明当n≥3时Bubble-sort图Bn的限制边连通度λ′(Bn)=2n-4.  相似文献   

6.
设图G是一个连通图,S⊆V(G)。图G的一棵S-斯坦纳树是一棵包含S中所有顶点的树T=(V ',E '),使得S⊆V '。如果连接S的两棵斯坦纳树T和T ',满足E(T)∩E(T ')=且V(T)∩V(T ')=S,则称T和T '是内部不交的。定义κ(S)为图G中内部不相交S-斯坦纳树的最大数目。广义k-连通度(2≤k≤n)定义为κk(G)=min{κ(S)|S⊆V(G)且|S|=k},显然,κ2(G)=κ(G)。证明了κ3(FQn)=n,其中FQn是n-维折叠超立方体。  相似文献   

7.
设S是图G的一个边子集,若G-S不连通且每个分支的阶至少为k,则称S为G的一个k-限制边割.若G有k-限制连割,G的最小k-限制边割的边数称为G的k阶限制边连通度,记为λk(G).记ξk(G)=min{|[X,]|∶|X|=k,G|X|连通},若λk(G)=ξk(G),则称G是λK-最优的.证明了若对G中任意一对不相邻的顶点x,y都有d(x) d(y)≥n 2(k-2),且G不是G*k图,则G是λk-最优的.  相似文献   

8.
设S是连通图G的一个边割。若G-S不包含孤立点,则称S是G的一个限制边割。图G的最小限制边割的边数称为G的限制边连通度,记为λ'(G).如果图G的限制边连通度等于其最小度,则称图G是最优限制边连通的,简称λ'-最优的。设G是一个n阶的连通无三角图,且最小度δ(G)≥2.文章证明了,若最小边度ξ(G)≥(n/2-2 )(1+1/δ(G)-1),则G是λ'-最优的。并由此推出,若连通无三角图G的最小度δ(G)≥n/4+1,则G是λ'-最优的。最后给出例子说明这些结果给出的边界都是紧的。  相似文献   

9.
高敬振  马玉 《山东科学》2011,24(1):61-64
设G是有限简单无向图,是G-U不连通,且G-U的每个分支的阶都至少为4的边集U称为G的4-限制边割。基数最小的4-限制边割称为λ4-割,最小基数称作4-限制边连通度,记作λ44(G)。若λ4(G)=ξ4(G),称G是λ4-最优的。若任意一个λ4-割都孤立一个四阶连通子图,则称G是超级-λ4的。应用邻域交条件给出了图是λ4-最优的和超级-λ4的充分条件。  相似文献   

10.
m-限制边割将连通图分离成阶不小于m的连通分支,图G的最小m-限制边割所含的边数称为图的m-限制边连通度.本文给出了n立方体的m-限制边连通度的表达式,由此推出:当m≤2(n/2)-1或m=2 k≤2n-1(k为任意正整数)时,超立方体Qn是极大m-限制边连通的.  相似文献   

11.
有各种各样的方法去衡量不同网络的可靠性和容错性.一个连通图G的g-额外连通度Kg(g-额外边连通度λg)是顶点数最小的顶点集S(边数最少的边集S),使得G-S不连通,并且剩下的每个连通分支含有的顶点数至少是g+1.探究n-维折叠交叉超立方体FCQn的2-额外连通度和2-额外边连通度,证明得到如下结论:当n≥8时,κ2(...  相似文献   

12.
G =(V ,E)是无向连通图 ,无环允许有重边 .S是V的至少包含两个顶点的子集 ,S的边连通度λG(S)被定义为使S中的顶点不属于同一连通分支所需去掉的最少边数 .给定集合V和V的一个划分V =V1∪V2 ∪…∪Vr(|r|≥ 1,|V1|≥ 2 )以及正整数序列k1>k2 >… >kr≥ 2 .记Si=V1∪V2 ∪…∪Vi,1≤i≤r.构造一个连通图G =(V ,E)满足 :λG(Si)≥ki(1≤i≤r)且边数 |E|最小 .这种图G称为与所给划分和正整数序列相对应的最优分级边连通图 .在给出顶点子集的边连通度概念的基础上 ,本文提出并讨论了有关最优分级边连通图的构造问题  相似文献   

13.
研究了两个图G1和G2的强乘积图G1(□×)G2的连通度和边连通度,这里证明了λ(G1(□×)G2)=min{λ1(n2+2m2),λ2(n1+2m1),δ1+δ2+δ1δ2},如果G1和G2都是连通的;还证明了κ(G1(□×)G2)=min{δ1n2,δ2n1,δ1+δ2+δ1δ2),如果G1和G2都是极大连通的.其中,ni,mi,λi和δi分别表示Gi(i=1,2)的阶数、边数、边连通度和最小度.  相似文献   

14.
设S是连通图G中的一个边子集。若G S不连通且它的每个连通分支的阶至少为k,则称S是G的一个k限制边割。图G的最小k限制边割的边数称为G的k限制边连通度,记为λκ(G)。定义ξκ(G)=min{|[X,X]|:|X|=k,G[X]连通},其中X=V(G)\X。若λk (G)=ξk(G),则称G是极大k限制边连通的。设G是一个围长至少为5的λ3 连通图。本文证明了若G中不存在5个点u1,u2,v1,v2,v3使得d(ui,vj)≥3(i=1,2;j=1,2,3),则G是极大3限制边连通的。  相似文献   

15.
设G=(V,E)是有限简单无向图,U是G的一个边割,k是一正整数.若G-U的每个分支的阶至少为k,则称U为G的一个k阶限制边割.定义G的k阶限制边连通度λ(G)为G的k阶限制边割中最少的边数,达到最小的称为λ割.定义ξ(G) =min{(F):F是G的k阶连通子图},其中(F)表示恰好有一个端点在F上的边的数目.如果λ(G) =ξ(G),则称G是λ最优图.本文给出了二部图λ3最优性的一个原子条件.  相似文献   

16.
设S是连通图G中的一个边子集。若G-S不连通且它的每个连通分支的阶至少为k,则称S是G的一个k限制边割。图G的最小k限制边割的边数称为G的k限制边连通度,记为λk(G).义ζk(G)=min{|[X,X]|∶|X|=k,G[X]连通},其中X=V(G)\X.若λk(G)=ζk(G),则称G是λk-最优的。如果图G的每个最小k限制边割都孤立了一个k阶连通子图,那么称G是超级-λk的。设k是一个不小于2的正整数且G是一个阶不小于2庇的图。本文证明了若对于G中任意一对不相邻顶点u,v都有d(u)+d(v)≥ν+2k-4且G不属于一类特殊图,则G是λk-最优的。最后,给出了图是超级-λk的一个充分条件。  相似文献   

17.
证明了如下结论:设n为偶数,r和k为奇效,n>r>k>0,λ≥2为整数,λ~*=2[λ/2]+1,r-λ~*k>0,G是有n个点、边连通度为λ的r-正则图,若n<(r+2)(k+1),则G是k-对等图。  相似文献   

18.
设G是有限简单无向图,k是正整数.使G-S每个分支的阶不小于k的边割S称为G的k阶限制边割.G的四阶限制边连通度λ4(G)是G的四阶限制边割之中最少的边数.若对于任意边e∈E(G),均有λ4(G-e)=λ4(G)-1,则称G是极小四阶限制边连通图.定义ξ4(G)=min {(e)(U):U(∪)V(G),G[U]是四阶连通导出子图},此处(e)(U)表示恰好有一个点在U上的边的数目.若λ4(G)=ξ4(G),则称G是λ4最优的.若每个5阶限制边割都孤立出G的一个5阶连通子图,则称G是超级5阶边连通的.笔者给出:极小四阶限制边连通图若不是λ4最优的,则是3正则,围长为5,任意边都关联5圈,且是超级5阶边连通的图.  相似文献   

19.
本文证明:当简单图G的棱连通度λ=1或当G的阶n≤2λ(λ≥2)时,G的任何点x部满足其梭凝聚度c’(x)≤1; 而当n>2λ(λ≥2)时,满足c’(x)≤l的顶点x的数目至少有(λ+2)个。  相似文献   

20.
设G是有限简单无向图,使G-S的每个分支都包含至少k个点的边割S称为G的k-限制边割。G的k-限制边连通度λk(G)是G的k-限制边割之中最少的边数。定义ξk(G)=min{[U,U-]:U V(G),|U|=k,G[U]是连通的},若λk(G)=ξk(G),则称G是λk-最优的。若任意最小k-限制边割都孤立一个k阶分支,则称图G是超级-λk的。应用范型条件给出了图是λ3-最优和超级-λ3的充分条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号