首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 265 毫秒
1.
采用一种基于射线理论和模式理论相结合的方法 ,用模式理论计算焦散面半径 ,以此半径为判据用射线方法确定穿过纤芯的模式 ,即能被吸收的模式 .该模式的总数与总模数的比值即为泵浦吸收效率 .用此方法计算了两种圆形内包层截面的双包层光纤的纤芯对内包层中泵浦光的吸收效率与纤芯半径和偏芯距离的关系 .计算结果表明 :圆形内包层截面的双包层光纤激光器和放大器可以通过将纤芯偏离中心位置来提高吸收效率 .该结果与用 2维几何光学射线法的结果一致 .  相似文献   

2.
高功率光纤激光器研究   总被引:7,自引:0,他引:7  
在讨论高功率光纤激光器工作原理的基础上,分析了高功率光纤激光器的关键技术及其实现方法,概括性评述了高功率光纤激光器研究的最新进展。指出高功率光纤激光器的关键技术主要是包层泵浦技术、光纤融和技术以及谐振腔制备技术;研制矩形或梅花形等内包层结构的双包层增益光纤,采用并行侧向泵浦技术,制备复合型的光纤光栅谐振腔是解决上述关键技术的有效手段。另外,发展新结构的高功率光纤激光器是进一步提高光纤激光器输出功率,改善其性能的必然趋势。  相似文献   

3.
光纤激光器具有转换效率高、光束质量好、散热方便、结构紧凑等优点,是高功率激光器领域的研究热点。本文设计了温控、水冷系统使半导体激光二极管泵浦源稳定在工作波长。通过设计的包层泵浦功率剥除器,有效地剥离了未被掺镱(Yb3+)双包层光纤吸收的泵浦光。采用20 W的半导体二极管激光器作为泵浦源,5 m长掺镱(Yb3+)双包层光纤作为增益介质,光纤光栅作为腔镜,在泵浦功率为19 W时,获得10.42 W的激光输出,激光波长1 062 nm,光-光转换效率约54.8%。  相似文献   

4.
光纤激光器具有转换效率高、光束质量好、散热方便、结构紧凑等优点,是高功率激光器领域的研究热点。本文设计了温控、水冷系统使半导体激光二极管泵浦源稳定在工作波长。通过设计的包层泵浦功率剥除器,有效地剥离了未被掺镱(Yb3+)双包层光纤吸收的泵浦光。采用20w的半导体二极管激光器作为泵浦源,5m长掺镱(Yb3+)双包层光纤作为增益介质,光纤光栅作为腔镜,在泵浦功率为19w时,获得10.42W的激光输出,激光波长1062nm,光一光转换效率约54.8%。  相似文献   

5.
基于光传输方程,数值分析了所设计的双包层Er^3+/Yb^3+共掺光纤放大器系统结构在980nm泵浦下,输出信号功率和噪声特性;讨论了它们随输入信号功率、输入信号波长、泵浦信号波长和光纤包层面积的关系。结果表明,该系统结构在输入信号小于-30dBm,激活光纤长度为4m时,输出信号功率超过10dBm,增益高于35dB,噪声系数受光纤内包层与纤芯面积之比影响较大,且小于3.5dB.  相似文献   

6.
基于激光器稳态速率方程理论,分析了掺Yb3 双包层光纤激光器的输出特性,讨论了谐振腔结构、泵浦方式以及在近阈值和强泵浦情况下,输出反射镜的反射率对输出功率的影响。通过数值计算分析可知,对于F-P腔结构的双包层光纤激光器,采用后向泵浦比采用前向泵浦获得的输出功率大,增益分布也较后者平坦;在近阈值情况下进行泵浦,输出耦合镜有一个最佳反射率,使输出功率达到最大。一般反射率应取在0.4~0.7之间,但在强泵浦情况下,输出反射镜的反射率越低越好。同时还发现,由于光纤对激光存在着再吸收,因此在一定的泵浦功率下,增益介质长度存在一个最佳长度值,使输出功率达到最大。一般光纤应在70~90 m之间。  相似文献   

7.
双二色镜腔的国产掺Yb3+双包层光纤激光器   总被引:2,自引:0,他引:2  
国产双包层光纤对泵浦光不能实现有效吸收,从而导致剩余泵光过多的现象,本文采用了双二色镜的腔结构,研究了国产D型内包层掺Yb3 双包层光纤激光器的输出特性,得到了无剩余泵光的激光脉冲输出,中心波长为1.076μm,平均功率为604 nw.  相似文献   

8.
通过数值模拟研究了双端泵浦的高功率掺镱双包层光纤激光器的输出特性。首次提出当其他参数一定时,合理地分配正、反向泵浦光功率能够使得输出光功率最大,并对泵浦光功率分配问题作了详细的讨论;为提高光纤激光器的输出功率提供了理论依据。  相似文献   

9.
采用光纤光栅作为光纤激光器的谐振腔, 利用中心波长为970 nm的半导体激光器(LD)作为抽运源. 对准圆形内包层的掺Yb3+双包层光纤进行泵浦, 其抽运功率为11.8 W, 实现了7.5 W的单模激光输出, 输出波长为1 080 nm, 斜效率63.5%.  相似文献   

10.
利用国产掺镱粗芯D型双包层光纤,进行了正向和反向端面泵浦实验研究,实验发现反向泵浦时转化效率较高.正向泵浦时获得193W的激光输出,对应着最大入纤功率280W,斜率效率约为70%;反向泵浦获得243W的激光输出,对应着最大入纤功率310W,斜率效率约为78%.理论部分从速率方程出发,模拟计算了直线腔掺镱光纤激光器内部的功率分布,给出了不同泵浦方式下输出功率与光纤长度的关系,跟实验部分符合较好.  相似文献   

11.
宋志强  马良柱  常军  王昌  刘统玉 《山东科学》2009,22(6):35-37,41
研制了一种连续输出掺Yb3+双包层光纤激光器。采用7只8W半导体泵浦激光器(LD),自行设计了串联式恒流源驱动电路,利用光纤合束器技术构成大功率泵浦光源。重点解决了双包层光纤的低损耗熔接问题,在20m吸收系数为0.8dB/m@915nm的掺Yb3+光纤中获得了最高30.8W的输出功率,激光器斜率效率达76.8%,电光转换效率接近30%。  相似文献   

12.
采用国产的掺Yb^3 双包层光纤和包层泵浦技术,分别对10m和20m光纤的输出特性进行了研究。10m光纤在1064nm获得58mW的激光输出,阈值为138.8mW,斜效率为10%;20m光纤在1067nm获得104.8mW的激光输出,阈值为109mW。  相似文献   

13.
 通过构建基于非线性偏振旋转机理的掺Yb3+环形光纤激光器, 获得了等幅和非等幅两种双波长输出状态, 分别测量其输出功率. 结果表明, 由于不同波段激光增益的差别较大, 因此不同波长的转换效率相差较大.  分析了双波长输出的可调谐特性, 并考察了泵浦功率对1 029 nm和1 048 nm双波长输出的影响.   观察到2~7个波长的输出, 并测量了其泵浦功率区间及最大输出功率.   相似文献   

14.
双包层光纤激光器是目前研制出的功率最大的光纤激光器 ,它的激光输出功率可达几百瓦 .本文介绍了双包层光纤激光器的工作原理、优点、应用及其发展前景 .  相似文献   

15.
研究了一种新型的双包层阶跃光波导,内包层的折射率大于芯及外包层的折射率,因而光被限制在内包层中传播。文中推导了此类光波导的子午光线和空间光线的数值孔径。在弱波导近似下推出了柱坐标下的波导模式方程。  相似文献   

16.
光纤激光器的发展与应用   总被引:1,自引:0,他引:1  
侯蓝田  韩颖 《燕山大学学报》2011,35(2):95-101,114
本文对光纤激光器的现状、发展和应用进行了综述。光纤激光器从掺杂稀土元素发展到掺杂过渡族金属元素;掺杂方法从单纯化学气相沉积(Chemical VaporDeposition,CVD)发展到气相、液相、溶胶-凝胶(sol-gel)和改进的化学沉积(MCVD)等;光纤结构从单包层、双包层到今天的多芯双包层光子晶体光纤;激光功率已经到几十千瓦,光子晶体光纤激光器的功率也已超过1.5 kW。目前,它们广泛应用于造船、航天、机械、电器、汽车、化工等多个领域。新光纤技术的成功,必将推动多种产业的快速发展。  相似文献   

17.
基于半导体激光器的快速成型能量源   总被引:1,自引:0,他引:1  
针对快速成型技术中存在的问题,提出了一种可选址驱动的半导体激光器线阵能量源新方案.在计算机软件与硬件控制下,以带尾纤的低功率半导体激光器光纤输出端集成的方法设计和实现了选址驱动能量源线阵雏形.用两组半导体激光器光纤输出端线阵交错排列补偿以形成一维长度为10mm、宽度为0.25mm连续线阵能量源.该方案原理可行,为将来实现高功率半导体激光器阵列在快速成型技术中的应用提供了坚实的基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号