首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
为研究伴随高温气流下落过程中铁矿粉的热分解和还原行为的规律,在气粉两相流运动方程基础上,联立热分解、还原反应的动力学方程,以及气流、粉粒和炉壁之间的传热方程,建立了该过程的一维数学模型,应用计算机求解数学模型,求得各种条件下的出口反应率均与实测值符合很好,证明了本模型的适用性,进一步应用该模型研究了气体流量、组成、炉温及粉矿、粒度等实验条件对粉矿的停留时间、升降温曲线及反应行为的影响,从理论上解释了不同实验条件下的实验结果。  相似文献   

2.
水文从理论上计算、分析和比较了熔融还原炼铁法用球团矿、精矿粉和矿煤球团作原料时的优缺点,可供选捍熔融还原炼铁法研究方案时参考。  相似文献   

3.
为了考察高炉内烧结矿与块矿间的高温交互反应对其初渣生成行为的影响,本文采用试验研究结合理论计算的方法,研究烧结矿、块矿及其二者混合炉料的初渣生成行为及其初渣特性。结果表明:单种块矿或烧结矿的初渣生成温度区间宽;烧结矿与块矿间的高温交互反应能显著改善块矿的初渣生成行为,并降低其初渣黏度;铁矿石间高温交互反应程度的强弱受其化学成分、还原性能、气孔率等因素的影响。  相似文献   

4.
通过可视化高温实验装置观察了七种不同类型常用进口铁矿粉试样的熔化流动过程.在所测定的熔融曲线上定义了T30、T55、TR以及SR等表征其熔融特性的评价指标,并以此考察了不同类型铁矿粉的烧结熔融特性.研究结果表明:澳大利亚褐铁矿最容易产生液相,但其液相形成过程中温度区间窄,温控性差,安全性低;澳大利亚半褐铁矿在低温烧结条件下有效液相量不足,而温控性则略好于澳大利亚褐铁矿;澳大利亚、南非以及巴西南部的赤铁矿熔融特性较为适宜,但前者易形成液相而后两者温控性和安全性更好;巴西的南部精粉、北部赤铁矿在低温烧结下很难生成液相.通过对各种铁矿粉熔融特性的研究,提出了基于铁矿粉熔融特性的烧结优化配矿原则.  相似文献   

5.
通过建立二维数值模型,利用计算流体力学软件进行数值模拟,研究了送粉气流压力和温度对冷喷涂过程中流场及粒子速度的影响.结果表明:喷涂中不可忽略送粉气流对流场及粒子速度的影响;为将粉末注入喷管,送粉气流的出口压力不能小于出口处的主气流压力,但增大送粉气流压力会使得进入喷管渐缩段的送粉冷气体流量增大,从而排挤高温主气流,同时也降低喷管气体流动的滞止焓,导致喷管喉部声速减小,不利于粒子加速;增加主气流温度对粒子加速效果不明显,而增加送粉气流温度可有效提高粒子撞击基板的速度,进而提高粉末粒子的沉积效率.  相似文献   

6.
对废轮胎粉进行了热重和微商热重(TG/DTG)实验研究,结果表明废轮胎粉的热解主要失重区可以分为3个阶段:第1个阶段主要是少量水分和焦油的析出(热分解),以及增塑剂和其他一些有机助剂的热分解;第2个阶段主要是天然橡胶的热分解;第3个阶段则主要是合成橡胶的热分解.在TG/DTG实验研究的基础上,建立了废轮胎胶粉的热解动力学模型,得到了热解反应活化能和前指因子等参数,并采用积分法确定了热解失重速率函数f(α)在热解低温阶段和高温阶段的函数表达式.动力学模型计算结果与实验结果的对比一致.  相似文献   

7.
讨论了 FeO 熔渣的还原机理,认为FeO 熔渣与含碳铁水间的还原反应既有渣中 FeO 与铁水中碳间的直接还原,又有CO 气体与渣中 FeO 间的间接还原。总还原反应受扩散传质控制,还原反应表观活化能为128kJ/mol。针对熔融还原法的特点,考察了向含碳铁水中喷吹预还原铁精矿粉时熔渣中FeO 的还原反应速度、碱度及喷吹速度的关系,探讨了1550℃时熔渣碱度对固体碳与预还原铁精矿熔渣间反应速度的影响。结果表明,熔渣中FeO 还原速度随反应温度、熔渣碱度及喷吹速度的增加而加快;1550℃时,石墨块与熔渣中 FeO 的反应速度,随熔渣碱度增加而升高。  相似文献   

8.
基于铁矿粉高温特性互补的烧结优化配矿   总被引:1,自引:0,他引:1  
首先测定巴西、澳洲及中国的10种铁矿粉的高温特性,将其与实际生产统计所得的高温特性适宜区间比较可知:巴西矿的同化性偏低,澳洲矿偏高,中国精粉则相对接近适宜区间;有两种巴西矿、一种澳洲矿以及一种中国精粉的液相流动性适宜,一种巴西矿、一种澳洲矿以及两种中国精粉则偏低,一种澳洲矿和一种中国精粉的液相流动性稍高;澳洲矿的黏结相自身强度偏低,巴西矿和中国精粉则较为适宜,且中国精粉相对更高. 在实验研究的基础上,提出基于铁矿粉高温特性互补而使混合矿高温特性指标适宜的烧结配矿新思路,并设计优化配矿方案,烧结杯实验结果显示均获得优良的烧结指标,证实了基于铁矿粉高温特性进行配矿的优越性.  相似文献   

9.
用燃烧波淬熄法研究了大颗粒Ti粉和Al粉制备TiAl金属间化合物的自蔓延高温合成反应机理.通过电镜观察和能谱分析发现:反应过程可用毛细铺展 界面反应机制解释.熔融的Al在整个反应过程中起着主要作用,首先熔融的Al液通过Ti粉间的毛细管作用以薄膜的形式铺展在Ti粉表面,并在接触面生成TiAl3.反应放出的热量有利于加速反应的进行,促使TiAl3与Ti进一步反应生成TiAl.但是生成的TiAl3层阻碍了Al液与Ti粉的接触,制约了反应的进行.最后,在试样中可以同时看到完全反应的Ti粉和未完全反应的Ti粉.  相似文献   

10.
钒钛磁铁矿结构与高温还原的关系   总被引:1,自引:0,他引:1  
研究了不同结构类型的钒钛磁铁矿石的低温及高温还原性能,分析了矿石结构,预处理方式,还原温度,还原时间和还原条件对还性的影响,还原性能与钒钛磁铁矿熔融还原工艺的关系及对高炉冶炼的影响。  相似文献   

11.
探讨了粉状铬铁矿在流化床内的流化性质、还原过程和加煤条件。通过实验,得到流化过程中煤粉与铬铁矿粉的相对分布规律,给出使煤粉沿流化床高度方向较均匀分布的条件,测试了流化还原气组成、空塔流速、外配煤量、还原时间及还原温度等因素对铬铁矿粉化还原的影响规律。给出还原条件局部优化结果。  相似文献   

12.
A mathematical model was established to describe the direct reduction of pellets in a rotary hearth furnace (RHF). In the model, heat transfer, mass transfer, and gas-solid chemical reactions were taken into account. The behaviors of iron metallization and dezincification were analyzed by the numerical method, which was validated by experimental data of the direct reduction of pellets in a Si-Mo furnace. The simulation results show that if the production targets of iron metallization and dezincification are up to 80% and 90%, respectively, the furnace temperature for high-temperature sections must be set higher than 1300℃. Moreover, an undersupply of secondary air by 20% will lead to a decline in iron metallization rate of discharged pellets by 10% and a decrease in dezincing rate by 13%. In addition, if the residence time of pellets in the furnace is over 20 min, its further extension will hardly lead to an obvious increase in production indexes under the same furnace temperature curve.  相似文献   

13.
结合风口回旋区燃烧和炉外煤气预热、脱除和循环的平衡关系,建立了氧气高炉一维气固换热与反应动力学模型,并采用传统高炉的运行和解剖数据对模型进行了验证分析.通过模型研究了氧气含量和上部循环煤气流量对氧气高炉炉内过程变量的影响规律.结果表明:氧气含量偏低和上部循环煤气流量不足时,会降低铁矿石还原效果,炉渣内出现大量未还原铁氧化物;氧气含量和上部循环煤气流量的提高可以有效提高炉内CO含量和铁矿石还原速度,但提高上部循环煤气流量会大幅提升炉顶煤气温度,增大热量损失.与传统高炉相比,氧气高炉内CO含量提高1.0~1.5倍,炉内气体还原性更强;铁矿石还原完成位置提高1.49 m,全炉还原反应速度更快;直接还原度降低55.2%~79.2%,炉内直接还原反应消耗的碳量更少.  相似文献   

14.
模拟研究了不同富氧率条件下钛磁铁矿氧化球团的还原过程.通过扫描电镜观察钒钛磁铁矿球团还原过程中的微观结构变化,结合能谱仪研究分析了还原过程中产物的分布变化.结果表明,富氧率的提高对还原度和还原速率提高有明显促进作用.还原过程中钛铁分离伴随着Al元素向高钛矿中迁移富集,最终Al与Ti原子数比为1∶3,Al很可能与钛铁氧化物固溶,形成某种复合化合物并导致球团矿还原难度增加.运用三种不同模型对球团矿还原过程对比分析,发现混合模型可以很好地表征球团矿不同阶段的还原过程.利用混合模型计算得出球团矿还原过程的动力学参数.结果表明,随着富氧率的升高,球团矿还原活化能逐渐降低,从不富氧到富氧79%条件下,活化能由26.5 k J/mol降低到19.68 k J/mol,活化能的降低增加了相同条件下活化分子的数量,提高了反应速率,有利于球团矿在较低还原温度条件下快速反应.  相似文献   

15.
通过在模拟高炉温度和煤气成分变化的条下,对我国重点钢铁厂铁矿石还原及焦炭气化的藕合反应研究,阐明了焦炭气化与铁矿石还原与反应历程有关。分析预测高炉冶炼效果除考虑恒定温度和恒定煤气成分下焦炭与铁矿石冶金性能外,还应考虑焦炭与铁矿石藕合反应过程CO过剩量。研究表明宝钢、首钢、本钢、鞍钢CO过剩系数ηc较小,煤气利用好;包钢、重钢和梅山冶金公司ηco较大,煤气利用较差。  相似文献   

16.
A sodium modification-direct reduction coupled process was proposed for the simultaneous extraction of V and Fe from vanadium-bearing titanomagnetite. The sodium oxidation of vanadium oxides to water-soluble sodium vanadate and the transformation of iron oxides to metallic iron were accomplished in a single-step high-temperature process. The increase in roasting temperature favors the reduction of iron oxides but disfavors the oxidation of vanadium oxides. The recoveries of vanadium, iron, and titanium reached 84.52%, 89.37%, and 95.59%, respectively. Moreover, the acid decomposition efficiency of titanium slag reached 96.45%. Compared with traditional processes, the novel process provides several advantages, including a shorter flow, a lower energy consumption, and a higher utilization efficiency of vanadium-bearing titanomagnetite resources.  相似文献   

17.
研究了印度尼西亚红土镍矿焙烧过程中的矿相转变过程以及焙烧温度对混合气体 (V (CO) : V (O2)=50 : 50)还原的影响. 采用差热/热重分析(differential scanning calorimeter/thermal gravimetric, DSC/TG)、比表面积分析法(Brunauer Emmett Teller, BET)、X射线衍射(X-ray diffraction, XRD)、扫描电镜(scanning electron microscope, SEM)等方法综合考察了各因素对红土镍矿焙烧过程及其对后续还原的影响. 结果表明: 在焙烧阶段, 红土镍矿中的针铁矿在 300°C 左右脱除结晶水形成赤铁矿, 600~700 °C时蛇纹石分解形成无定形态硅镁酸盐, 且当温度继续升高时无定形态硅镁酸盐会结晶形成橄榄石; 利用混合气体 (V (CO) : V (O2)=50 : 50)还原红土镍矿时, 随着焙烧温度的升高, 镍和铁的金属化率也逐渐升高, 经700°C焙烧后, 还原产物镍的金属化率最高可达86.81%, 但是当焙烧温度超过橄榄石结晶温度时则不利于红土镍矿的还原, 镍的金属化率降至66.73%.  相似文献   

18.
含碳球团还原的显微观察   总被引:1,自引:0,他引:1  
利用万能金相显微镜 Me F3观察含碳试样在惰性气体中的还原过程 ,验证了含碳球团的反应机理 ,即通过气体介质将固 -固反应转化为气 -固反应 ;渣相及排气现象的变化清楚的表明 :提高温度 ,可提高含碳球团的金属化率 ,但温度过高 ,将加重矿粉间的烧结 ,导致还原反应动力学条件恶化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号