首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Identification of a receptor for protein import into mitochondria   总被引:13,自引:0,他引:13  
D Pain  H Murakami  G Blobel 《Nature》1990,347(6292):444-449
Anti-idiotypic antibodies, prepared using a chemically synthesized signal peptide of a mitochondrial precursor protein, recognized a mitochondrial integral membrane protein (p32). Fab fragments derived from both anti-idiotypic antibodies and monospecific antibodies against purified p32 inhibited protein import into mitochondria. Moreover, anti-p32 antibodies specifically immunoprecipitated a precursor-p32 complex after detergent solubilization of mitochondria. Immunoelectron microscopy and subfractionation of mitochondria indicate that p32 is located in contact sites between the outer and inner mitochondrial membranes.  相似文献   

2.
Mitochondrial membrane remodelling regulated by a conserved rhomboid protease   总被引:25,自引:0,他引:25  
McQuibban GA  Saurya S  Freeman M 《Nature》2003,423(6939):537-541
Rhomboid proteins are intramembrane serine proteases that activate epidermal growth factor receptor (EGFR) signalling in Drosophila. Rhomboids are conserved throughout evolution, and even in eukaryotes their existence in species with no EGFRs implies that they must have additional roles. Here we report that Saccharomyces cerevisiae has two rhomboids, which we have named Rbd1p and Rbd2p. RBD1 deletion results in a respiratory defect; consistent with this, Rbd1p is localized in the inner mitochondrial membrane and mutant cells have disrupted mitochondria. We have identified two substrates of Rbd1p: cytochrome c peroxidase (Ccp1p); and a dynamin-like GTPase (Mgm1p), which is involved in mitochondrial membrane fusion. Rbd1p mutants are indistinguishable from Mgm1p mutants, indicating that Mgm1p is a key substrate of Rbd1p and explaining the rbd1Delta mitochondrial phenotype. Our data indicate that mitochondrial membrane remodelling is regulated by cleavage of Mgm1p and show that intramembrane proteolysis by rhomboids controls cellular processes other than signalling. In addition, mitochondrial rhomboids are conserved throughout eukaryotes and the mammalian homologue, PARL, rescues the yeast mutant, suggesting that these proteins represent a functionally conserved subclass of rhomboid proteases.  相似文献   

3.
Bose HS  Lingappa VR  Miller WL 《Nature》2002,417(6884):87-91
Most mitochondrial proteins are synthesized on cytoplasmic ribosomes and imported into mitochondria. The imported proteins are directed to one of four submitochondrial compartments--the outer mitochondrial membrane, the inner mitochondrial membrane, the intramembraneous space, or the matrix--where the protein then functions. Here we show that the steroidogenic acute regulatory protein (StAR), a mitochondrial protein required for stress responses, reproduction, and sexual differentiation of male fetuses, exerts its activity transiently at the outer mitochondrial membrane rather than at its final resting place in the matrix. We also show that its residence time at this outer membrane and its activity are regulated by its speed of mitochondrial import. This may be the first example of a mitochondrial protein exerting its biological activity in a compartment other than that to which it is finally targeted. This system enables steroidogenic cells to initiate and terminate massive levels of steroidogenesis within a few minutes, permitting the rapid regulation of serum steroid hormone concentrations.  相似文献   

4.
通过在27个不同进化层次物种的基因组和蛋白组中搜索酵母线粒体蛋白转运系统亚基的同源序列, 并进一步分析了同源亚基序列相似性与其所在线粒体位置的关系. 结果表明, 位于线粒体相同位置的模块有类似的序列相似性曲线, 相似性曲线在模块内部一般有波峰和波谷. 从线粒体外膜到基质, 序列相似性整体升高. 线粒体蛋白转运系统亚基与一些功能不相关的蛋白也表现出序列相似关系, 且这些亚基多集中在线粒体的内膜和外膜.  相似文献   

5.
Mitochondria contain a complex machinery for the import of nuclear-encoded proteins. Receptor proteins exposed on the outer membrane surface are required for the specific binding of precursor proteins to mitochondria, either by binding of cytosolic signal recognition factors or by direct recognition of the precursor polypeptides. Subsequently, the precursors are inserted into the outer membrane at the general insertion site GIP (general insertion protein). Here we report the analysis of receptors and GIP by crosslinking of translocation intermediates and by coimmunoprecipitation. Surface-accumulated precursors were crosslinked to the receptors MOM19 and MOM72, suggesting a direct interaction of preproteins with surface receptors. We identified three novel mitochondrial outer membrane proteins, MOM7, MOM8, and MOM30 that, together with the previously identified MOM38, seem to form the GIP site and are present in the mitochondrial receptor complex.  相似文献   

6.
D Vestweber  J Brunner  A Baker  G Schatz 《Nature》1989,341(6239):205-209
An engineered precursor protein that sticks in the import site of isolated yeast mitochondria can be specifically photo-crosslinked to a mitochondrial outer-membrane protein of relative molecular mass 42,000 (42K). This protein (termed import-site protein 42 or ISP 42) is exposed on the mitochondrial surface; antibodies against it block protein import into mitochondria. ISP 42 is the first identified component of the putative transmembrane machinery that imports proteins into mitochondria.  相似文献   

7.
M Boutry  F Nagy  C Poulsen  K Aoyagi  N H Chua 《Nature》1987,328(6128):340-342
Most mitochondrial proteins are encoded by nuclear genes and are synthesized as precursors containing a presequence at the N terminus. In yeast and in mammalian cells, the function of the presequence in mitochondrial targeting has been revealed by chimaeric gene studies. Fusion of a mitochondrial presequence to a foreign protein coding sequence enables the protein to be imported into mitochondria in vitro as well as in vivo. Whether plant mitochondrial presequences function in the same way has been unknown. We have previously isolated and characterized a nuclear gene (atp2-1) from Nicotiana plumbaginifolia that encodes the beta-subunit of the mitochondrial ATP synthase. We have constructed a chimaeric gene comprising a putative atp2-1 presequence fused to the bacterial chloramphenicol acetyltransferase (CAT) coding sequence and introduced it into the tobacco genome. We report here that a segment of 90 amino acids of the N terminus of the beta-subunit precursor is sufficient for the specific targeting of the CAT protein to mitochondria in transgenic plants. Our results demonstrate a high specificity for organelle targeting in plant cells.  相似文献   

8.
K P Baker  A Schaniel  D Vestweber  G Schatz 《Nature》1990,348(6302):605-609
The gene encoding ISP42, an integral outermembrane protein located at the yeast mitochondrial protein import site was cloned, sequenced and modified. Yeast cells depleted of ISP42 accumulate uncleaved mitochondrial precursor proteins and then die. ISP42 is the first mitochondrial membrane protein shown to be indispensable for protein import and cell viability.  相似文献   

9.
Mitochondrial preproteins are imported by a multisubunit translocase of the outer membrane (TOM), including receptor proteins and a general import pore. The central receptor Tom22 binds preproteins through both its cytosolic domain and its intermembrane space domain and is stably associated with the channel protein Tom40 (refs 11-13). Here we report the unexpected observation that a yeast strain can survive without Tom22, although it is strongly reduced in growth and the import of mitochondrial proteins. Tom22 is a multifunctional protein that is required for the higher-level organization of the TOM machinery. In the absence of Tom22, the translocase dissociates into core complexes, representing the basic import units, but lacks a tight control of channel gating. The single membrane anchor of Tom22 is required for a stable interaction between the core complexes, whereas its cytosolic domain serves as docking point for the peripheral receptors Tom20 and Tom70. Thus a preprotein translocase can combine receptor functions with distinct organizing roles in a multidomain protein.  相似文献   

10.
The outer membranes of mitochondria and chloroplasts are distinguished by the presence of beta-barrel membrane proteins. The outer membrane of Gram-negative bacteria also harbours beta-barrel proteins. In mitochondria these proteins fulfil a variety of functions such as transport of small molecules (porin/VDAC), translocation of proteins (Tom40) and regulation of mitochondrial morphology (Mdm10). These proteins are encoded by the nucleus, synthesized in the cytosol, targeted to mitochondria as chaperone-bound species, recognized by the translocase of the outer membrane, and then inserted into the outer membrane where they assemble into functional oligomers. Whereas some knowledge has been accumulated on the pathways of insertion of proteins that span cellular membranes with alpha-helical segments, very little is known about how beta-barrel proteins are integrated into lipid bilayers and assembled into oligomeric structures. Here we describe a protein complex that is essential for the topogenesis of mitochondrial outer membrane beta-barrel proteins (TOB). We present evidence that important elements of the topogenesis of beta-barrel membrane proteins have been conserved during the evolution of mitochondria from endosymbiotic bacterial ancestors.  相似文献   

11.
DNA-protein conjugates can enter mitochondria via the protein import pathway   总被引:14,自引:0,他引:14  
D Vestweber  G Schatz 《Nature》1989,338(6211):170-172
Mitochondria import most of their proteins and small molecules from the cytoplasm. There is some tentative evidence that they import some of their RNAs, but it is not known how nucleic acids could enter mitochondria. Here, we show that isolated yeast mitochondria can import a single-stranded or double-stranded 24-base pair piece of DNA whose 5' end is covalently linked to the C-terminus of a mitochondrial precursor protein.  相似文献   

12.
A family of mitochondrial proteins involved in bioenergetICS and biogenesis   总被引:9,自引:0,他引:9  
The respiratory chain complexes of mitochondria consist of many different subunits, of which only a few partake directly in electron transport. The functions of the subunits that do not contain prosthetic groups are largely unknown. The cytochrome reductase complex of Neurospora crassa, for examine, consists of nine different subunits, of which the peripheral membrane proteins I and II (ref.3) that are located on the matrix side of the mitochondrial inner membrane are the largest subunits devoid of redox centres. Significantly, a cytochrome reductase fraction lacking these two subunits was inactive in electron transfer, and in yeast mutants with defective genes for either of the two subunits, assembly of the reductase is disrupted. Most mitochondrial proteins are imported into the mitochondrion as precursor proteins, and two proteins are necessary for cleaving their presequences, namely the matrix processing peptidase (MPP) and the processing enhancing protein (PEP), the latter strongly stimulating the activity of the former. Temperature-sensitive yeast mutants, which are affected in PEP or MPP, accumulate precursors at the nonpermissive temperature. We report here that subunit I of the cytochrome reductase can be grouped as members of the same protein family.  相似文献   

13.
Mammalian cells have three ATP-dependent DNA ligases, which are required for DNA replication and repair. Homologues of ligase I (Lig1) and ligase IV (Lig4) are ubiquitous in Eukarya, whereas ligase III (Lig3), which has nuclear and mitochondrial forms, appears to be restricted to vertebrates. Lig3 is implicated in various DNA repair pathways with its partner protein Xrcc1 (ref. 1). Deletion of Lig3 results in early embryonic lethality in mice, as well as apparent cellular lethality, which has precluded definitive characterization of Lig3 function. Here we used pre-emptive complementation to determine the viability requirement for Lig3 in mammalian cells and its requirement in DNA repair. Various forms of Lig3 were introduced stably into mouse embryonic stem (mES) cells containing a conditional allele of Lig3 that could be deleted with Cre recombinase. With this approach, we find that the mitochondrial, but not nuclear, Lig3 is required for cellular viability. Although the catalytic function of Lig3 is required, the zinc finger (ZnF) and BRCA1 carboxy (C)-terminal-related (BRCT) domains of Lig3 are not. Remarkably, the viability requirement for Lig3 can be circumvented by targeting Lig1 to the mitochondria or expressing Chlorella virus DNA ligase, the minimal eukaryal nick-sealing enzyme, or Escherichia coli LigA, an NAD(+)-dependent ligase. Lig3-null cells are not sensitive to several DNA-damaging agents that sensitize Xrcc1-deficient cells. Our results establish a role for Lig3 in mitochondria, but distinguish it from its interacting protein Xrcc1.  相似文献   

14.
Y Ye  H H Meyer  T A Rapoport 《Nature》2001,414(6864):652-656
In eukaryotic cells, incorrectly folded proteins in the endoplasmic reticulum (ER) are exported into the cytosol and degraded by the proteasome. This pathway is co-opted by some viruses. For example, the US11 protein of the human cytomegalovirus targets the major histocompatibility complex class I heavy chain for cytosolic degradation. How proteins are extracted from the ER membrane is unknown. In bacteria and mitochondria, members of the AAA ATPase family are involved in extracting and degrading membrane proteins. Here we demonstrate that another member of this family, Cdc48 in yeast and p97 in mammals, is required for the export of ER proteins into the cytosol. Whereas Cdc48/p97 was previously known to function in a complex with the cofactor p47 (ref. 5) in membrane fusion, we demonstrate that its role in ER protein export requires the interacting partners Ufd1 and Npl4. The AAA ATPase interacts with substrates at the ER membrane and is needed to release them as polyubiquitinated species into the cytosol. We propose that the Cdc48/p97-Ufd1-Npl4 complex extracts proteins from the ER membrane for cytosolic degradation.  相似文献   

15.
S Shimizu  M Narita  Y Tsujimoto 《Nature》1999,399(6735):483-487
During transduction of an apoptotic (death) signal into the cell, there is an alteration in the permeability of the membranes of the cell's mitochondria, which causes the translocation of the apoptogenic protein cytochrome c into the cytoplasm, which in turn activates death-driving proteolytic proteins known as caspases. The Bcl-2 family of proteins, whose members may be anti-apoptotic or pro-apoptotic, regulates cell death by controlling this mitochondrial membrane permeability during apoptosis, but how that is achieved is unclear. Here we create liposomes that carry the mitochondrial porin channel (also called the voltage-dependent anion channel, or VDAC) to show that the recombinant pro-apoptotic proteins Bax and Bak accelerate the opening of VDAC, whereas the anti-apoptotic protein Bcl-x(L) closes VDAC by binding to it directly. Bax and Bak allow cytochrome c to pass through VDAC out of liposomes, but passage is prevented by Bcl-x(L). In agreement with this, VDAC1-deficient mitochondria from a mutant yeast did not exhibit a Bax/Bak-induced loss in membrane potential and cytochrome c release, both of which were inhibited by Bcl-x(L). Our results indicate that the Bcl-2 family of proteins bind to the VDAC in order to regulate the mitochondrial membrane potential and the release of cytochrome c during apoptosis.  相似文献   

16.
The mitochondrial import receptors MOM19 and MOM72 form a complex with two other proteins of the mitochondrial outer membrane, MOM38 and MOM22. This receptor complex is involved in recognition, membrane insertion and translocation of precursor proteins with MOM38 constituting (at least part of) the general insertion site GIP.  相似文献   

17.
M D Resh  H P Ling 《Nature》1990,346(6279):84-86
The transforming protein of Rous sarcoma virus, p60v-src, is a myristylated membrane-bound phosphoprotein. Interaction of p60v-src with the plasma membrane is essential for transforming activity, and is mediated by association with a membrane-bound Src receptor protein. Evidence for the existence of an Src receptor is based on the ability of a myristylated peptide containing the N-terminal Src sequence to inhibit binding of p60v-src to plasma membranes in vitro: binding of p60v-src to a plasma membrane receptor is therefore mediated by N-terminal Src sequences. Here we report that a myristyl-Src peptide, but not the corresponding non-myristylated peptide, can be specifically crosslinked to a plasma membrane protein of relative molecular mass 32,000 (Mr32K). The 32K protein represents an Src-binding protein in the plasma membrane that is likely to be a component of the myristyl-Src receptor, and which could be involved in cellular transformation.  相似文献   

18.
By analysis of a temperature-sensitive yeast mutant, a heat-shock protein in the matrix of mitochondria, mitochondrial hsp70 (Ssc1p), is found to be involved both in translocation of nuclear-encoded precursor proteins across the mitochondrial membranes and in (re)folding of imported proteins in the matrix.  相似文献   

19.
D Pain  Y S Kanwar  G Blobel 《Nature》1988,331(6153):232-237
An anti-idiotypic antibody approach was used to identify an integral membrane protein of the chloroplast envelope as a receptor for protein import into the chloroplast stroma. The import receptor is found in contact sites between the outer and inner membrane of the chloroplast envelope.  相似文献   

20.
YidC mediates membrane protein insertion in bacteria   总被引:13,自引:0,他引:13  
The basic machinery for the translocation of proteins into or across membranes is remarkably conserved from Escherichia coli to humans. In eukaryotes, proteins are inserted into the endoplasmic reticulum using the signal recognition particle (SRP) and the SRP receptor, as well as the integral membrane Sec61 trimeric complex (composed of alpha, beta and gamma subunits). In bacteria, most proteins are inserted by a related pathway that includes the SRP homologue Ffh, the SRP receptor FtsY, and the SecYEG trimeric complex, where Y and E are related to the Sec61 alpha and gamma subunits, respectively. Proteins in bacteria that exhibit no dependence on the Sec translocase were previously thought to insert into the membrane directly without the aid of a protein machinery. Here we show that membrane insertion of two Sec-independent proteins requires YidC. YidC is essential for E. coli viability and homologues are present in mitochondria and chloroplasts. Depletion of YidC also interferes with insertion of Sec-dependent membrane proteins, but it has only a minor effect on the export of secretory proteins. These results provide evidence for an additional component of the translocation machinery that is specialized for the integration of membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号