共查询到20条相似文献,搜索用时 15 毫秒
1.
给出了图K_n-{v_(n-5)v_(n-4),v_(n-3)v_(n-2),v_(n-1)v_n}(n≥14,n≡0(mod2))的点可区别边色数,其中Kn为n阶完全图。 相似文献
2.
研究n阶完全图Kn(n≥20,n≡0(mod2))去掉4条独立边后的点可区别边染色,并给出了图Kn-{v1v2,v3v4,v5v6,v7v8}(n≥20,n≡0(mod2))的点可区别边色数。 相似文献
3.
设G是简单图,图G的一个k-点可区别正常边染色f是指一个从E(G)到{1,2,…,k}的映射,且满足u,v∈V(G),u≠v,有S(u)≠S(v),其中S(u)={f(uw)|uw∈E(G)}.数min{k|G存在k-VDPEC染色}称为图G的点可区别正常边色数,记为χs′(G),研究了Wm∨Pn(n≤3)的点可区别边染色,给出了Wm∨Pn(n≤3)的点可区别边色数. 相似文献
4.
安明强 《甘肃联合大学学报(自然科学版)》2008,22(1):4-5,18
设G是简单图,f是从V(G)∪E(G)到{1,2,…,k]的一个映射.对每个u∈V(G),令C(u)={f(uv)|v∈V(G),uv∈E(G)].如果f是k-正常边染色,且对任意u,v∈V(G),有C(u)≠C(v),那么称f为图G的点可区别边染色(简称为k-VDEC).数x's(G)=min{k|G有k-VDEC}称为图G的点可区别边色数.本文通过应用概率方法,证明了对任意最大度△≥2的图G,x's(G)≤16△. 相似文献
5.
应用概率方法中的第一矩量原理和Markov不等式,证明了对于最大度为Δ的n阶图G,当Δ≥2时,其点可区别的边色数χv′d(G)≤nΔ(n-1),当n≥3,Δ≥1时,其点可区别的全色数χvt(G)≤2 nΔ(n-1). 相似文献
6.
设G是简单图,图G的一个k-点可区别正常边染色f是指一个从E(G)到{1,2,…,k}的映射,且满足V u,v∈V(G),u≠v,有S(u)≠S(v),其中S(u)={f(uw)|uw ∈E(G)}.数min{k|G存在k-VDPEC染色}称为图G的点可区别正常边色数,记为χs(G),研究了WmVPn(n≤3)的点可区别边染色,给出了WmVPn(n≤3)的点可区别边色数. 相似文献
7.
对简单图G(V,E),设f是从E(G)到{1,2,…,k}的映射,k为自然数,如果f满足:1)对任意的uv,uw∈E(G),v≠w,有f(uv)≠f(uw);2)对任意的u,v∈V(G),u≠v,有C(u)≠C(v).则称f为图G的k-点可区别边染色法,而最小的k被称为点可区别边色数(其中C(u)={f(uv)|uv∈E(G)}).研究了图K2n\E(Fm)(n≥4,m≥2)的点可区别边色数. 相似文献
8.
对简单图G(V,E),设f是从E(G)到{1,2,…,k}的映射,k为自然数,如果f满足:1)对任意的uv,uw∈E(G),v≠w,有f(uv)≠f(uw);2)对任意的u,v∈V(G),u≠v,有C(u)≠C(v).则称f为图G的k-点可区别边染色法,而最小的k被称为点可区别边色数(其中C(u)={f(uv)|uv∈E(G)}).研究了图K2nE(F5)(n≥13)的点可区别边色数. 相似文献
9.
田双亮 《西北民族学院学报》2005,26(2):1-3
通过研究若干n重积图的边色数及点可区别边色数,就可证明■(Gi)=△(Gi),i=1,2,L,n,则∑=′×××=■△(G_i)其中G1×G2×L×Gn为G1,G2,L,Gn的n重积图. 相似文献
10.
11.
对网G的正常边染色,若满足不同点的点所关联边色集合不同,则称此染色法为点可区别的边染色法,其所用最少染色数称为该罔的点可区别边色数.得到了路与轮的联网的点可区别边色数。 相似文献
12.
证明了,任意正整数k≥2,存在点可区别边色数为2k+1的k+1-正则图;任意正整数m≥4,存在点可区别边色数为m的偶图. 相似文献
13.
简单图G的正常边染色f,若对于任意u,v∈V(G),有C(u)≠C(v),称,是图G的点可区别边染色,其中C(u)={f(uv)│uv∈E(G)}。若满足││Ei│—│Ej││≤1(i,j=1,2,…,k),其中任意e∈Ei,f(e)=i(i=1,2,…,k),称f是图G的点可区别均匀边染色。讨论了若干图的Mycielski图的点可区别均匀边染色。 相似文献
14.
对图G的正常边染色,若满足不同点的点所关联边色集合不同,则称此染色法为点可区别的边染色法,其所用最少染色数称为该图的点可区域边色数。本文得到了路与星的联图的点可区别边色数。 相似文献
15.
若干积图的点可区别边染色 总被引:2,自引:0,他引:2
证明了:(1)两个n(n2)阶完全图的积图的点可区别边色数为2n. (2)对阶至少是3的完全图Kn,若χ′vd(G)=Δ(G),则χ′vd(G×Kn)=n+Δ(G).(3)若χ′vd(Gi)=Δ(Gi),i=1,2,则χ′vd(G1×G2)=Δ(G1)+Δ(G2). 相似文献
16.
17.
图的点可区别无圈边色数的一个上界(英文) 总被引:2,自引:0,他引:2
图G的一个正常边染色f,若满足:1)G中无2-色圈;2)对于V(G)中的任意两点u和v,有C(u)≠C(v),这里C(u)={f(uw)|uw∈E(G)},则f叫做图G的一个点可区别无圈边染色.图G的点可区别无圈边色数,记为χ′_(vda)(G),是图G的一个点可区别无圈边染色所用色的最小数目.证明了若图G是一个最小度不小于5,且顶点数不超过30Δ~4的图时,χ′_(vda)(G)≤10Δ~2,其中Δ是图G的最大度. 相似文献
18.
图G的一个正常边染色如果满足任意两个不同点的关联边色集不同,且任意两种颜色所染边数目相差不超过1,则称为点可区别的边染色,其所用的最少的颜色数称为图G的点可区别均匀边色数.运用组合方法研究联图Pm∨Fn的点可区别完全均匀边染色,得到当m=1,2,3,4,n+1时的Pm∨Fn的点可区别均匀边色数. 相似文献
19.
对图G的正常边染色,若满足不同点的点所关联边色集合不同,则称此染色法为点可区别的边染色法,其所用最少染色数称为该图的点可区别边色数.得到了路与轮的联图的点可区别边色数. 相似文献
20.
对图G的正常边染色,若满足不同点的点所关联边色集合不同,则称此染色法为点可区别的边染色法,其所用最少染色数称为该图的点可区别边色数.得到了路与轮的联图的点可区别边色数. 相似文献