共查询到18条相似文献,搜索用时 109 毫秒
1.
基于神经网络实现了非线性系统的分析,给出了计算实例,实验结果表明了方法的有效性。 相似文献
2.
主要介绍利用多层神经网络进行非线性系统辨识的几种模型以及相应的算法,并分析和比较它们的辨识性能.为高度不确定性动态系统的综合设计提出了一种分析方法。 相似文献
3.
PID神经网络辨识能力的初步研究 总被引:1,自引:0,他引:1
PID神经网络具有在线自学习能力,通过无教师的自学习方式,PID神经网络成功地实现了不同的系统辨识。本文在介绍PID神经网络的基础上,论述了PID神经网络进行系统辨识的理论依据,给出了PID神经网络通过自学习进行非线性动态系统辨识的结果。 相似文献
4.
基于GA-BP算法的神经网络非线性系统辨识与仿真 总被引:1,自引:0,他引:1
本文根据神经网络在非线性函数中的逼近能力,发挥遗传算法(GA)全局寻优和BP算法局部收敛结合的优势,将GA-BP算法应用于神经网络,完成系统的非线性辨识功能.仿真结果表明:基于GA-BP算法的神经网络具有良好的非线性逼近能力和泛化能力,具有较高的系统辨识精度. 相似文献
5.
基于小波神经网络的非线性动态系统辨识 总被引:1,自引:1,他引:1
在小波神经网络的基础上提出了一种辨识非线性动态系统的方法.该方法有效地将系统辨识所需要的结构形式与多层神经网络及小波基函数所构成的分辨率信息处理过程相结合,建立了从数据到符号的自适应机制.仿真结果表明,该方法具有收敛速度快、逼近精度高、鲁棒性好等优点. 相似文献
6.
研究了过程神经网络在非线性动态系统辨识方面的应用.针对传统神经网络在解决系统过程式输入和时间顺序依赖性问题时出现的使模型和算法复杂化的弊端,提出了一种时变输入输出的过程神经元网络模型作为系统的辨识模型,采用基于函数基展开的梯度下降算法,以油田井组注采系统为例验证了模型和算法的有效性,进而说明了过程神经元网络对于解决系统过程式输入的非线性动态系统辨识问题的适用性. 相似文献
7.
基于神经网络的Smith补偿PID控制设计 总被引:1,自引:1,他引:1
韩玉兵 《河海大学学报(自然科学版)》2000,28(5):88-91
针对工程实践中常见的纯滞后对象,在Smith补偿控制基础之上,利用人工神经网络的非线性映射功能对控制对象进行在线辨识,达到对时滞补偿预报的目的;利用神经网络PID控制器(Adaline网络)代替常规控制器,实现了对时滞复杂对象的在线自适应控制;并根据ITAE性能指标原则对神经网络控制器参数进行整定,得到一组经验公式。仿真结果验证了本文神经网络控制方案的有效性。 相似文献
8.
针对非线性、不确定时滞对象,提出一种基于神经网络算法的非线性PID控制器。该控制器将传统PID的比例、积分和微分参数分别构造成关于误差信号的非线性函数,并将非线性比例运算单元、非线性积分运算单元和非线性微分运算单元分别作为隐层神经元的激励函数,从而构造将PID控制与神经网络控制融为一体的智能控制器。研究结果表明:采用此智能控制器有效解决了传统PID难以控制非线性对象的问题以及传统神经网络控制器隐层神经元节点数难以确定的问题,仿真结果验证了该智能控制器的有效性。 相似文献
9.
根据实际生产现场对控制的要求,提出了一种将PID控制与神经网络相结合,采用BP网络辨识未知的被控对象,使用单纯形算法寻找最优的PID控制参数,控制与学习并行的控制方案.并对二阶对象进行仿真研究,将其与单位阶跃响应进行了比较. 相似文献
10.
讨论了一种基于多层种经网络的用于非线性系统辨识的局部模型网络的结构、原理和网络训练方法,为非线性系统的自适应控制提供了一条新途径。 相似文献
11.
在分析模糊神经网络辨识特点及现状的基础上,设计了一种适用于非线性多输入系统的辨识模型。本模型将T-S模糊模型与5层动态模糊神经网络结构相结合,通过参数学习算法优化辨识结构,对辨识模型进行反馈调节,得到的辨识精度较高。另外,对输入数据采用归一化的方法进行预处理,加快了网络的辨识速率。最后,通过仿真实例证明了该设计的有效性,为模糊神经网络辨识结构的设计提供了一种新的思路和方法。 相似文献
12.
黄道平 《华南理工大学学报(自然科学版)》2001,29(11):11-14
针对非线性时变现象,将DLF神经网络与PID基本原理相结合,提出了基于DLF神经网络的非线性自适应PID控制器设计方法,并解决了此类控制器初始参数难以设置的问题,仿真研究证实了其可行性和有效性。 相似文献
13.
人工神经网络是-个非线性动力学系统,具有自适应、自组织、自学习等功能。本文利用人工神经网络具有表达任意非线性映射的能力,对非线性系统进行系统辨识。仿真结果表明,该方法是可行的,计算精度高。 相似文献
14.
针对PID控制器,本文介绍了一种基于小波神经网络的免疫PID控制器。由于小波变换具有较好的时频局部性.神经网络拥有较强大的非线性映射的能力、自适应、自学习等优势,将规范正交的小波函数与神经网络的基函数相结合构成小波神经网络.该网络同时具有小波和神经网络的优点,本文用小波神经网络来逼近免疫PID的函数,试验以及仿真结果表明,本文介绍的控制器性能优于其它类型免疫PID控制器。 相似文献
15.
提出一种新的PID型神经网络的自适应控制系统,该控制系统采用对角递归神经网络辨识对象的正向模型,采用一种新型神经网络控制器产生控制量,与常规PID控制不同的是,该控制量不再是误差信号的比例、积分和微分量的简单线性组合,而是这些信号的一种非线性组合,从而可以有效地解决常规PID控制器存在的快速性和超调量之间的矛盾.仿真实验表明,这种新型控制系统具有较强的自适应性和鲁棒性. 相似文献
16.
王启志 《华侨大学学报(自然科学版)》2005,26(4):397-400
逆模型控制是一个新颖的控制方法.但在实现上会遇到很多困难,如被控对象的大滞后、时变性和不确定性等,使精确的对象数学模型难以建立.文中根据工业对象的特点及对控制系统高鲁棒性与高自适应性的要求,提出一种改进的神经网络的模型参考自适应逆控制系统.仿真试验表明,此系统具有良好的跟踪给定信号和消除对象干扰的作用. 相似文献
17.
基于遗传算法优化的神经网络PID控制器 总被引:3,自引:0,他引:3
张明君 《北华大学学报(自然科学版)》2004,5(5):462-465
对于参数可变的时变系统和非线性复杂系统,常规PID控制器不能获得理想的控制效果,针对复杂非线性对象的神经网络PID控制不失为1种有效的控制策略.根据神经网络初始权值的选取影响控制器性能的特点,提出了基于遗传算法优化参数的神经网络PID控制器,实现了基于实数编码的GA参数优化.仿真结果证明了该算法的有效性。 相似文献
18.
基于神经网络的非线性、大滞后系统辨识是当前研究的热点之一,介绍了神经网络辨识的基本原理,研究了BP与RBF神经网络两种典型网络的设计和算法,最后通过MATLAB进行了仿真分析与比较。仿真结果表明:一致性方面RBF优于BP神经网络,RBF神经网络收敛速度更快,辨识效果更好;泛化性能方面RBF网络较差,不如BP网络。由此得出两种网络各自的优缺点,在实际应用中可以此作为神经网络模型辨识的参考。 相似文献