首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Mycobacterium tuberculosis claims more human lives each year than any other bacterial pathogen. Infection is maintained in spite of acquired immunity and resists eradication by antimicrobials. Despite an urgent need for new therapies targeting persistent bacteria, our knowledge of bacterial metabolism throughout the course of infection remains rudimentary. Here we report that persistence of M. tuberculosis in mice is facilitated by isocitrate lyase (ICL), an enzyme essential for the metabolism of fatty acids. Disruption of the icl gene attenuated bacterial persistence and virulence in immune-competent mice without affecting bacterial growth during the acute phase of infection. A link between the requirement for ICL and the immune status of the host was established by the restored virulence of delta icl bacteria in interferon-gamma knockout mice. This link was apparent at the level of the infected macrophage: Activation of infected macrophages increased expression of ICL, and the delta icl mutant was markedly attenuated for survival in activated but not resting macrophages. These data suggest that the metabolism of M. tuberculosis in vivo is profoundly influenced by the host response to infection, an observation with important implications for the treatment of chronic tuberculosis.  相似文献   

2.
3.
Chin AI  Dempsey PW  Bruhn K  Miller JF  Xu Y  Cheng G 《Nature》2002,416(6877):190-194
Host defences to microorganisms rely on a coordinated interplay between the innate and adaptive responses of immunity. Infection with intracellular bacteria triggers an immediate innate response requiring macrophages, neutrophils and natural killer cells, whereas subsequent activation of an adaptive response through development of T-helper subtype 1 cells (TH1) proceeds during persistent infection. To understand the physiological role of receptor-interacting protein 2 (Rip2), also known as RICK and CARDIAK, we generated mice with a targeted disruption of the gene coding for Rip2. Here we show that Rip2-deficient mice exhibit a profoundly decreased ability to defend against infection by the intracellular pathogen Listeria monocytogenes. Rip2-deficient macrophages infected with L. monocytogenes or treated with lipopolysaccharide (LPS) have decreased activation of NF-kappaB, whereas dominant negative Rip2 inhibited NF-kappaB activation mediated by Toll-like receptor 4 and Nod1. In vivo, Rip2-deficient mice were resistant to the lethal effects of LPS-induced endotoxic shock. Furthermore, Rip2 deficiency results in impaired interferon-gamma production in both TH1 and natural killer cells, attributed in part to defective interleukin-12-induced Stat4 activation. Our data reflect requirements for Rip2 in multiple pathways regulating immune and inflammatory responses.  相似文献   

4.
The recognition and phagocytosis of microbes by macrophages is a principal aspect of innate immunity that is conserved from insects to humans. Drosophila melanogaster has circulating macrophages that phagocytose microbes similarly to mammalian macrophages, suggesting that insect macrophages can be used as a model to study cell-mediated innate immunity. We devised a double-stranded RNA interference-based screen in macrophage-like Drosophila S2 cells, and have defined 34 gene products involved in phagocytosis. These include proteins that participate in haemocyte development, vesicle transport, actin cytoskeleton regulation and a cell surface receptor. This receptor, Peptidoglycan recognition protein LC (PGRP-LC), is involved in phagocytosis of Gram-negative but not Gram-positive bacteria. Drosophila humoral immunity also distinguishes between Gram-negative and Gram-positive bacteria through the Imd and Toll pathways, respectively; however, a receptor for the Imd pathway has not been identified. Here we show that PGRP-LC is important for antibacterial peptide synthesis induced by Escherichia coli both in vitro and in vivo. Furthermore, totem mutants, which fail to express PGRP-LC, are susceptible to Gram-negative (E. coli), but not Gram-positive, bacterial infection. Our results demonstrate that PGRP-LC is an essential component for recognition and signalling of Gram-negative bacteria. Furthermore, this functional genomic approach is likely to have applications beyond phagocytosis.  相似文献   

5.
All humans become infected with multiple herpesviruses during childhood. After clearance of acute infection, herpesviruses enter a dormant state known as latency. Latency persists for the life of the host and is presumed to be parasitic, as it leaves the individual at risk for subsequent viral reactivation and disease. Here we show that herpesvirus latency also confers a surprising benefit to the host. Mice latently infected with either murine gammaherpesvirus 68 or murine cytomegalovirus, which are genetically highly similar to the human pathogens Epstein-Barr virus and human cytomegalovirus, respectively, are resistant to infection with the bacterial pathogens Listeria monocytogenes and Yersinia pestis. Latency-induced protection is not antigen specific but involves prolonged production of the antiviral cytokine interferon-gamma and systemic activation of macrophages. Latency thereby upregulates the basal activation state of innate immunity against subsequent infections. We speculate that herpesvirus latency may also sculpt the immune response to self and environmental antigens through establishment of a polarized cytokine environment. Thus, whereas the immune evasion capabilities and lifelong persistence of herpesviruses are commonly viewed as solely pathogenic, our data suggest that latency is a symbiotic relationship with immune benefits for the host.  相似文献   

6.
Okeoma CM  Lovsin N  Peterlin BM  Ross SR 《Nature》2007,445(7130):927-930
Genomes of all mammals encode apobec3 genes, which are thought to have a function in intrinsic cellular immunity to several viruses including human immunodeficiency virus type 1 (HIV-1). APOBEC3 (A3) proteins are packaged into virions and inhibit retroviral replication in newly infected cells, at least in part by deaminating cytidines on the negative strand DNA intermediates. However, the role of A3 in innate resistance to mouse retroviruses is not understood. Here we show that A3 functions during retroviral infection in vivo and provides partial protection to mice against infection with mouse mammary tumour virus (MMTV). Both mouse A3 and human A3G proteins interacted with the MMTV nucleocapsid in an RNA-dependent fashion and were packaged into virions. In addition, mouse A3-containing and human A3G-containing virions showed a marked decrease in titre. Last, A3(-/-) mice were more susceptible to MMTV infection, because virus spread was more rapid and extensive than in their wild-type littermates.  相似文献   

7.
JW Shui  A Larange  G Kim  JL Vela  S Zahner  H Cheroutre  M Kronenberg 《Nature》2012,488(7410):222-225
The herpes virus entry mediator (HVEM), a member of the tumour-necrosis factor receptor family, has diverse functions, augmenting or inhibiting the immune response. HVEM was recently reported as a colitis risk locus in patients, and in a mouse model of colitis we demonstrated an anti-inflammatory role for HVEM, but its mechanism of action in the mucosal immune system was unknown. Here we report an important role for epithelial HVEM in innate mucosal defence against pathogenic bacteria. HVEM enhances immune responses by NF-κB-inducing kinase-dependent Stat3 activation, which promotes the epithelial expression of genes important for immunity. During intestinal Citrobacter rodentium infection, a mouse model for enteropathogenic Escherichia coli infection, Hvem?/? mice showed decreased Stat3 activation, impaired responses in the colon, higher bacterial burdens and increased mortality. We identified the immunoglobulin superfamily molecule CD160 (refs 7 and 8), expressed predominantly by innate-like intraepithelial lymphocytes, as the ligand engaging epithelial HVEM for host protection. Likewise, in pulmonary Streptococcus pneumoniae infection, HVEM is also required for host defence. Our results pinpoint HVEM as an important orchestrator of mucosal immunity, integrating signals from innate lymphocytes to induce optimal epithelial Stat3 activation, which indicates that targeting HVEM with agonists could improve host defence.  相似文献   

8.
T Roger  J David  M P Glauser  T Calandra 《Nature》2001,414(6866):920-924
  相似文献   

9.
Fu ZQ  Guo M  Jeong BR  Tian F  Elthon TE  Cerny RL  Staiger D  Alfano JR 《Nature》2007,447(7142):284-288
  相似文献   

10.
结核分枝杆菌的免疫机制及抗原研究进展   总被引:2,自引:0,他引:2  
结核分枝杆菌是一种胞内病原苗,在抗结核分枝杆菌感染中,活菌疫苗中的分泌蛋白起主要的免疫保护作用,它们激活宿主T细胞介导的细胞免疫,影响宿主免疫保护与病菌耐受性之间的不稳定平衡,决定宿主是否得病.结核分枝杆菌的特异性和保护性抗原的筛选为结核病的快速诊断及新型疫苗构建打下基础.  相似文献   

11.
B Kearney  B J Staskawicz 《Nature》1990,346(6282):385-386
Disease-resistance genes introduced into cultivated plants are often rendered ineffective by the ability of pathogen populations to overcome host resistance. The bacterial pathogen Xanthomonas campestris pathovar vesicatoria causes bacterial spot disease of tomato and pepper, and this pathogen has been shown to overcome disease resistance in pepper (Capsicum annuum) by evading the recognition and defence response of the host plant. Numerous resistance genes to bacterial spot have been identified in pepper and its wild relatives, each providing resistance to specific races of X.c. vesicatoria. The resistance gene Bs1, for example, provides resistance to X.c. vesicatoria strains expressing the avirulence gene avrBs1; Bs2 provides resistance to stains expressing avrBs2 and so on. We now report that avr Bs2 is highly conserved among strains of X.c. vesicatoria, and among many other pathovars of X. campestris. Furthermore, we find that avrBs2 is in fact needed for full virulence of the pathogen on susceptible hosts. This implies that plants carrying Bs2 can recognize an essential gene of the bacterial pathogen, which may explain why Bs2 confers the only effective field resistance to X.c. vesicatoria in pepper.  相似文献   

12.
Gu K  Yang B  Tian D  Wu L  Wang D  Sreekala C  Yang F  Chu Z  Wang GL  White FF  Yin Z 《Nature》2005,435(7045):1122-1125
Disease resistance (R) genes in plants encode products that specifically recognise incompatible pathogens and trigger a cascade of events leading to disease resistance in the host plant. R-gene specificity is dictated by both host R genes and cognate avirulence (avr) genes in pathogens. However, the basis of gene-for-gene specificity is not well understood. Here, we report the cloning of the R gene Xa27 from rice and the cognate avr gene avrXa27 from Xanthomonas oryzae pv. oryzae. Resistant and susceptible alleles of Xa27 encode identical proteins. However, expression of only the resistant allele occurs when a rice plant is challenged by bacteria harbouring avrXa27, whose product is a nuclear localized type-III effector. Induction of Xa27 occurs only in the immediate vicinity of infected tissue, whereas ectopic expression of Xa27 resulted in resistance to otherwise compatible strains of the pathogen. Thus Xa27 specificity towards incompatible pathogens involves the differential expression of the R gene in the presence of the AvrXa27 effector.  相似文献   

13.
Cox JS  Chen B  McNeil M  Jacobs WR 《Nature》1999,402(6757):79-83
Tuberculosis is the leading cause of death in the world resulting from a single bacterial infection. Despite its enormous burden on world health, little is known about the molecular mechanisms of pathogenesis of Mycobacterium tuberculosis. Bacterial multiplication and concomitant tissue damage within an infected host, including experimentally infected mice, occurs primarily in the lungs-the favoured niche of M. tuberculosis. Although it has been proposed that the distinctive cell wall of M. tuberculosis is important for virulence, rigorous genetic proof has been lacking. Here, using signature-tagged mutagenesis, we isolated three attenuated M. tuberculosis mutants that cannot synthesize or transport a complex, cell wall-associated lipid called phthiocerol dimycocerosate (PDIM) which is found only in pathogenic mycobacteria. Two mutants have transposon insertions affecting genes implicated in PDIM synthesis; the third has a disruption in a gene encoding a large transmembrane protein required for proper subcellular localization of PDIM. Synthesis and transport of this complex lipid is only required for growth in the lung; all three mutants are unaffected for growth in the liver and spleen. This clearly shows that a lipid is required for M. tuberculosis virulence.  相似文献   

14.
Non-canonical inflammasome activation targets caspase-11   总被引:1,自引:0,他引:1  
Caspase-1 activation by inflammasome scaffolds comprised of intracellular nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) and the adaptor ASC is believed to be essential for production of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 during the innate immune response. Here we show, with C57BL/6 Casp11 gene-targeted mice, that caspase-11 (also known as caspase-4) is critical for caspase-1 activation and IL-1β production in macrophages infected with Escherichia coli, Citrobacter rodentium or Vibrio cholerae. Strain 129 mice, like Casp11(-/-) mice, exhibited defects in IL-1β production and harboured a mutation in the Casp11 locus that attenuated caspase-11 expression. This finding is important because published targeting of the Casp1 gene was done using strain 129 embryonic stem cells. Casp1 and Casp11 are too close in the genome to be segregated by recombination; consequently, the published Casp1(-/-) mice lack both caspase-11 and caspase-1. Interestingly, Casp11(-/-) macrophages secreted IL-1β normally in response to ATP and monosodium urate, indicating that caspase-11 is engaged by a non-canonical inflammasome. Casp1(-/-)Casp11(129mt/129mt) macrophages expressing caspase-11 from a C57BL/6 bacterial artificial chromosome transgene failed to secrete IL-1β regardless of stimulus, confirming an essential role for caspase-1 in IL-1β production. Caspase-11 rather than caspase-1, however, was required for non-canonical inflammasome-triggered macrophage cell death, indicating that caspase-11 orchestrates both caspase-1-dependent and -independent outputs. Caspase-1 activation by non-canonical stimuli required NLRP3 and ASC, but caspase-11 processing and cell death did not, implying that there is a distinct activator of caspase-11. Lastly, loss of caspase-11 rather than caspase-1 protected mice from a lethal dose of lipopolysaccharide. These data highlight a unique pro-inflammatory role for caspase-11 in the innate immune response to clinically significant bacterial infections.  相似文献   

15.
Feng F  Yang F  Rong W  Wu X  Zhang J  Chen S  He C  Zhou JM 《Nature》2012,485(7396):114-118
Plant innate immunity is activated on the detection of pathogen-associated molecular patterns (PAMPs) at the cell surface, or of pathogen effector proteins inside the plant cell. Together, PAMP-triggered immunity and effector-triggered immunity constitute powerful defences against various phytopathogens. Pathogenic bacteria inject a variety of effector proteins into the host cell to assist infection or propagation. A number of effector proteins have been shown to inhibit plant immunity, but the biochemical basis remains unknown for the vast majority of these effectors. Here we show that the Xanthomonas campestris pathovar campestris type III effector AvrAC enhances virulence and inhibits plant immunity by specifically targeting Arabidopsis BIK1 and RIPK, two receptor-like cytoplasmic kinases known to mediate immune signalling. AvrAC is a uridylyl transferase that adds uridine 5'-monophosphate to and conceals conserved phosphorylation sites in the activation loop of BIK1 and RIPK, reducing their kinase activity and consequently inhibiting downstream signalling.  相似文献   

16.
Fifty million new infections with Mycobacterium tuberculosis occur annually, claiming 2-3 million lives from tuberculosis worldwide. Despite the apparent lack of significant genetic heterogeneity between strains of M. tuberculosis, there is mounting evidence that considerable heterogeneity exists in molecules important in disease pathogenesis. These differences may manifest in the ability of some isolates to modify the host cellular immune response, thereby contributing to the observed diversity of clinical outcomes. Here we describe the identification and functional relevance of a highly biologically active lipid species-a polyketide synthase-derived phenolic glycolipid (PGL) produced by a subset of M. tuberculosis isolates belonging to the W-Beijing family that show 'hyperlethality' in murine disease models. Disruption of PGL synthesis results in loss of this hypervirulent phenotype without significantly affecting bacterial load during disease. Loss of PGL was found to correlate with an increase in the release of the pro-inflammatory cytokines tumour-necrosis factor-alpha and interleukins 6 and 12 in vitro. Furthermore, the overproduction of PGL by M. tuberculosis or the addition of purified PGL to monocyte-derived macrophages was found to inhibit the release of these pro-inflammatory mediators in a dose-dependent manner.  相似文献   

17.
对宿主利用体内各种细胞与结核分支杆菌的相互作用进行了综述.机体抵抗结核分枝杆菌感染的机制包括特异性免疫和非特异性免疫,参与非特异性免疫的主要有巨噬细胞和γδT细胞,另外,树突状细胞在引发T细胞免疫方面起着关键的作用.由于结核分支杆菌是胞内寄生菌,特异性免疫以细胞免疫为主,主要包括CD4+T细胞免疫和CD8+T细胞免疫.  相似文献   

18.
Rosebrock TR  Zeng L  Brady JJ  Abramovitch RB  Xiao F  Martin GB 《Nature》2007,448(7151):370-374
Many bacterial pathogens of plants and animals use a type III secretion system to deliver diverse virulence-associated 'effector' proteins into the host cell. The mechanisms by which these effectors act are mostly unknown; however, they often promote disease by suppressing host immunity. One type III effector, AvrPtoB, expressed by the plant pathogen Pseudomonas syringae pv. tomato, has a carboxy-terminal domain that is an E3 ubiquitin ligase. Deletion of this domain allows an amino-terminal region of AvrPtoB (AvrPtoB(1-387)) to be detected by certain tomato varieties leading to immunity-associated programmed cell death. Here we show that a host kinase, Fen, physically interacts with AvrPtoB(1-387 )and is responsible for activating the plant immune response. The AvrPtoB E3 ligase specifically ubiquitinates Fen and promotes its degradation in a proteasome-dependent manner. This degradation leads to disease susceptibility in Fen-expressing tomato lines. Various wild species of tomato were found to exhibit immunity in response to AvrPtoB(1-387 )and not to full-length AvrPtoB. Thus, by acquiring an E3 ligase domain, AvrPtoB has thwarted a highly conserved host resistance mechanism.  相似文献   

19.
Xing W  Zou Y  Liu Q  Liu J  Luo X  Huang Q  Chen S  Zhu L  Bi R  Hao Q  Wu JW  Zhou JM  Chai J 《Nature》2007,449(7159):243-247
Pathogenic microbes use effectors to enhance susceptibility in host plants. However, plants have evolved a sophisticated immune system to detect these effectors using cognate disease resistance proteins, a recognition that is highly specific, often elicits rapid and localized cell death, known as a hypersensitive response, and thus potentially limits pathogen growth. Despite numerous genetic and biochemical studies on the interactions between pathogen effector proteins and plant resistance proteins, the structural bases for such interactions remain elusive. The direct interaction between the tomato protein kinase Pto and the Pseudomonas syringae effector protein AvrPto is known to trigger disease resistance and programmed cell death through the nucleotide-binding site/leucine-rich repeat (NBS-LRR) class of disease resistance protein Prf. Here we present the crystal structure of an AvrPto-Pto complex. Contrary to the widely held hypothesis that AvrPto activates Pto kinase activity, our structural and biochemical analyses demonstrated that AvrPto is an inhibitor of Pto kinase in vitro. The AvrPto-Pto interaction is mediated by the phosphorylation-stabilized P+1 loop and a second loop in Pto, both of which negatively regulate the Prf-mediated defences in the absence of AvrPto in tomato plants. Together, our results show that AvrPto derepresses host defences by interacting with the two defence-inhibition loops of Pto.  相似文献   

20.
SNARE-protein-mediated disease resistance at the plant cell wall   总被引:2,自引:0,他引:2  
Failure of pathogenic fungi to breach the plant cell wall constitutes a major component of immunity of non-host plant species--species outside the pathogen host range--and accounts for a proportion of aborted infection attempts on 'susceptible' host plants (basal resistance). Neither form of penetration resistance is understood at the molecular level. We developed a screen for penetration (pen) mutants of Arabidopsis, which are disabled in non-host penetration resistance against barley powdery mildew, Blumeria graminis f. sp. hordei, and we isolated the PEN1 gene. We also isolated barley ROR2 (ref. 2), which is required for basal penetration resistance against B. g. hordei. The genes encode functionally homologous syntaxins, demonstrating a mechanistic link between non-host resistance and basal penetration resistance in monocotyledons and dicotyledons. We show that resistance in barley requires a SNAP-25 (synaptosome-associated protein, molecular mass 25 kDa) homologue capable of forming a binary SNAP receptor (SNARE) complex with ROR2. Genetic control of vesicle behaviour at penetration sites, and plasma membrane location of PEN1/ROR2, is consistent with a proposed involvement of SNARE-complex-mediated exocytosis and/or homotypic vesicle fusion events in resistance. Functions associated with SNARE-dependent penetration resistance are dispensable for immunity mediated by race-specific resistance (R) genes, highlighting fundamental differences between these two resistance forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号