共查询到15条相似文献,搜索用时 93 毫秒
1.
2.
利用定义在[0,1)上的连续Legendre多小波数值求解线性Fredholm积分一微分方程.剁用Legendre多小波逼近理论将积分一微分方程离散化为代数方程组.最后用数值算例与CAS小波理论以及Legendre小波理论比较,结果表明特别是当方程的解是线性函数时,Legendre多小波方法表现出更高的精度和有效性. 相似文献
3.
利用已建立的CAS小波算子矩阵数值求解一类线性积分-微分方程组,通过CAS小波逼近理论将积分-微分方程组离散化为代数方程组,最后利用数值算例验证数值求解方法的有效性. 相似文献
4.
为了求解非线性分数阶Fredholm积分微分方程的数值解,通过Legendre多项式,得出了Legendre小波,并由block pulse函数给出了Legendre小波的分数阶积分算子矩阵,利用block pulse函数与Legendre小波的积分算子矩阵的性质将非线性分数阶Fredholm积分微分方程转化为非线性代数方程组,进而可以求得原积分微分方程的数值解.结果表明:随着点数的增多,数值解的精度也越来越高.文中给出的算例表明了该方法的可行性和有效性. 相似文献
5.
为利用Legendre小波求分数阶Bratu型积分微分方程数值解,结合Legendre小波定义及其性质,给出Legendre小波分数阶积分算子矩阵.利用所得算子矩阵,将原问题转化为求解非线性代数方程组,进而可以计算机编程求解,从而大大简化计算量.唯一性定理指出所求分数阶Bratu型积分微分方程的解唯一.结果表明:随着点数的增多,数值解精度也越来越高.数值算例验证了算法的有效性和可行性. 相似文献
6.
为求高阶Volterra积分微分方程的数值解,提出CAS小波法.利用CAS小波的正交性质,及小波矩阵的稀疏性,同时给出了CAS小波的积分算子矩阵,运用小波算子矩阵将高阶积分微分方程化为线性代数方程组,简化计算,提出了CAS小波收敛性定理.结果表明:随着点数的增多,数值解的精度也越来越高.数值算例验证了理论的正确性和方法的有效性. 相似文献
7.
先利用Legendre小波的分数阶积分算子矩阵将非线性分数阶Volterra积分微分方程转化为非线性代数方程组, 再通过数值求解方程组得到原方程的数值解, 证明了误差边界值, 并用算例验证了该方法的有效性和精确性. 相似文献
8.
Fredholm积分微分方程的数值算法一直是近些年来研究的重要课题.利用Haar小波研究了非线性分数阶Fredholm积分微分方程.Haar小波具有正交性,可计算性以及小支集性.结合block pulse函数给出了Haar小波的分数阶积分算子矩阵,并利用该函数的定义与Haar小波的积分算子矩阵的性质,将非线性分数阶Fredholm积分微分方程转换为非线性代数方程,从而便于计算机求解.最后给出算例表明该方法的有效性. 相似文献
9.
由多分辨分析理论,构造了L(2[0,1])上的分段Legendre多小波基函数,并利用所构造的基函数提出了求解积分方程的配点法.求解过程中,对小波系数用阈值进行筛选,利用分段Legendre多小波基函数求解.以第一类Fredholm积分方程为例,表明该算法简单有效. 相似文献
10.
研究Legendre小波方法求解具有一阶导和二阶导类型的线性Fredholm integro-differential型方程,应用Legendre小波逼近法将这2类方程分别化为代数方程求解.实例说明,Legendre小波在解决这2类方程时具可行性和有效性. 相似文献
11.
为了求解变系数分数阶Fredholm微积分方程的数值解,运用Caputo分数阶导数及性质,得出了由Legendre多项式构造的任意分数阶微分算子Dα,再利用区间[0,1]上Legendre级数的逼近,将变系数的分数阶微积分方程用矩阵形式表示,采用配点法,得到相应的代数方程组,对原微积分方程的数值解进行了研究并给出了数值算例,验证了Legendre多项式方法的可行性和有效性。 相似文献
12.
应用 Legendre 小波求解一类变系数分数阶微分方程组,利用 Legendre 小波积分算子矩阵将微分方程组转化成易于求解的代数方程组形式,进而对其进行求解。给出 Legendre 小波近似未知函数的收敛性分析,证明该方法的正确性,并给出三个数值算例进一步说明该方法是可行并有效的。 相似文献
13.
利用Legendre小波Galerkin方法将积分方程转化为线性方程组,对n+1个不同的正则化子分别利用Tikhonov正则化方法求解,得到了n+1组不同的稳定解。然后应用Newton插值公式求得了正则化子为零时积分方程的最佳稳定解。数值算例表明,方法是非常有效的。 相似文献
14.
研究了求解非线性分数阶微分方程的hp型Legendre谱配置法。首先提出将多分数阶微分方程转化成等价的Volterra积分方程,其次构造了近似求解原方程的数值方法,最后通过数值实验说明了该算法的理论正确性以及所构造数值方法的有效性。 相似文献
15.
提出一种非线性随机Ito-Volterra积分方程的数值解方法。首先了解Haar小波的构造,然后利用Haar小波的随机积分算子矩阵将目标方程转化为非线性代数方程,从而得到方程的数值解,最后讨论了目标方法的误差分析。 相似文献