首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the coseismic displacement and preseismic deformation fields of the Lushan M S7.0 earthquake that occurred on April 20, 2013. The results are based on GPS observations along the Longmenshan fault and within its vicinity. The coseismic displacement and preseismic GPS results indicate that in the strain release of this earthquake, the thrust rupture is dominant and the laevorotation movement is secondary. Furthermore, we infer that any possible the rupture does not reach the earth’s surface, and the seismogenic fault is most likely one fault to the east of the Guanxian-Anxian fault. Some detailed results are obtainable. (1) The southern segment of the Longmenshan fault is locked preceding the Lushan earthquake. After the Wenchuan earthquake, the strain accumulation rate in the southeast direction accelerates in the epicenter of the Lushan earthquake, and the angle between the principal compressional strain and the seismogenic fault indicates that a sinistral deformation background in the direction of the seismogenic fault precedes the Lushan earthquake. Therefore, it is evident that the Wenchuan M S8.0 earthquake accelerated the pregnancy of the Lushan earthquake. (2) The coseismic displacements reflected by GPS data are mainly located in a region that is 230 km (NW direction) × 100 km (SW direction), and coseismic displacements larger than 10 mm lie predominantly in a 100-km region (NW direction). (3) On a large scale, the coseismic displacement shows thrust characteristics, but the associated values are remarkably small in the near field (within 70 km) of the earthquake fault. Meanwhile, the thrust movement in this 70-km region does not correspond with the attenuation characteristics of the strain release, indicating that the rupture of this earthquake does not reach the earth’s surface. (4) The laevorotation movements are remarkable in the 50-km region, which is located in the hanging wall that is close to the earthquake fault, and the corresponding values in this case correlate with the attenuation characteristics of the strain release.  相似文献   

2.
Magnetotelluric measurements were carried out along two profiles across the middle and southwestern sections of the Longmenshan fault zone (LMSf) from 2009 to 2011, after the 2008 Wenchuan M W7.9 earthquake. The former profile crosses the Wenchuan event epicenter and the latter one crosses 2013 Lushan M S7.0 event epicenter. The data were analyzed using advanced processing techniques, including phase tensor and two-dimensional inversion methods, in order to obtain reliable 2-D profiles of the electrical structure in the vicinity of the two earthquakes. A comparison of the two profiles indicates both similarities and differences in the deep crustal structure of the LMSf. West of the southwestern section, a crustal high conductivity layer (HCL) is present at about 10 km depth below the Songpan-Garzê block; this is about 10 km shallower than that under the middle section of the LMSf. A high resistivity body (HRB) is observed beneath the southwestern section, extending from the near surface to the top of upper mantle. It has a smaller size than the HRB observed below the middle section. In the middle section, there is a local area of decreased resistivity within the HRB but there is absence of this area. The 2013 Lushan earthquake occurred close to the eastern boundary of HRB and the Shuangshi-Dachuan fault, of which the seismogenic context has both common and different features in comparison with the 2008 Wenchuan event. On a large scale, the 2013 Lushan earthquake is associated with the HCL and deformation in the crust including HCL of the eastern Tibetan Plateau. In order to assess seismic risk, it is important to consider both the stress state and the detailed crustal structure in different parts of the LMSf.  相似文献   

3.
By using precise leveling data observed between 1985 and 2010 across the south section of the Longmenshan fault zone, and eliminating the coseismic displacements caused by the Wenchuan Ms 8.0 earthquake, the interseismic vertical deformation field was obtained. The result shows that the Lushan region, located between the Shuangshi-Dachuan fault (front range of the Long- menshan fault) and the Xinkaidian fault (south section of the Dayi fault), is situated in the intersection zone of positive and negative vertical deformation gradient zones, indicating that this zone was locked within 25 years before the Lushan earthquake. Based on leveling data across the rupture zone surveyed between 2010 and 2013, and by eliminating the vertical deformation within 3 years before the earthquake, the coseismic vertical displacement was derived. The coseismic vertical displacement for the benchmark DD35, which is closest to the epicenter, is up to 198.4 mm (with respect to MY165A). The coseismic dis- placement field revealed that the northwest region (hanging wall) moved upwards in comparison with the southeastern region (foot wall), suggesting that the seismogenic fault mainly underwent thrust faulting. By comparing the coseismic and interseismic vertical deformation fields, it was found that the mechanisms of this earthquake are consistent with the elastic rebound theory; the elastic strain energy (displacement deficit) accumulated before the Lu- shan earthquake was released during this quake.  相似文献   

4.
The source rupture process of the M S7.0 Lushan earthquake was here evaluated using 40 long-period P waveforms with even azimuth coverage of stations. Results reveal that the rupture process of the Lushan M S7.0 event to be simpler than that of the Wenchuan earthquake and also showed significant differences between the two rupture processes. The whole rupture process lasted 36 s and most of the moment was released within the first 13 s. The total released moment is 1.9×1019N m with M W=6.8. Rupture propagated upwards and bilaterally to both sides from the initial point, resulting in a large slip region of 40 km×30 km, with the maximum slip of 1.8 m, located above the initial point. No surface displacement was estimated around the epicenter, but displacement was observed about 20 km NE and SW directions of the epicenter. Both showed slips of less than 40 cm. The rupture suddenly stopped at 20 km NE of the initial point. This was consistent with the aftershock activity. This phenomenon indicates the existence of significant variation of the medium or tectonic structure, which may prevent the propagation of the rupture and aftershock activity. The earthquake risk of the left segment of Qianshan fault is worthy of attention.  相似文献   

5.
After the 20 April 2013 Lushan MS6.6 earthquake occurred,investigation and identification of the seismogenic fault for this event have become a focused and debatable issue.This work prepared an initial landslide inventory map related to the Lushan earthquake based on field investigations and visual interpretation of high-resolution aerial photographs and provided evidence for solving the issue aforementioned.The analysis of three landslide-density profiles perpendicular to strike direction of the probable seismogenic fault shows that many landslides occurred on the footwall of the Shuangshi–Dachuan fault(SDF),without sudden change of landslide density near the fault.Very few landslides were detected near the Dayi fault(DF)and also no change of landslide density there.While obvious sudden change of landslide density appeared about 1–2 km from the northwest to the western Shangli fault(WSF),and the landslide density on the hanging wall of the fault is obviously higher than that of on the footwall.Therefore,we infer that the seismogenic fault for the Lushan earthquake is neither the SDF nor the DF,rather probably the WSF located between these two faults,which is an evident linear trace on the earth surface.Meanwhile,the coseismic slip did not propagate upward to the ground,implying the Lushan earthquake was spawned by a blind-thrust-fault beneath the WSF.  相似文献   

6.
Ran  YongKang  Shi  Xiang  Wang  Hu  Chen  LiChun  Chen  Jie  Liu  RuiChun  Gong  Huiling 《科学通报(英文版)》2010,55(9):841-850
The amount of coseismic deformation and its distribution of the Wenchuan earthquake provide important scientific bases for revealing the mechanisms of earthquake preparation and characterizing the rupture propagation of the Wenchuan earthquake. The previous studies have indicated that the earthquake ruptured the middle-to-north segment of the Longmenshan central fault and the middle segment of the Longmenshan range-front fault, which are characterized by two surface rupture zones of 240 km and 90 km in length, respectively. Based on the pre-earthquake information and photos of landforms and buildings obtained through ge-ologic and geomorphic survey of the area around Shaba Village of Beichuan County, Sichuan Province and the extensive interview with local villagers, we measured the displacements of the major terrain features and the dislocated buildings by total station instruments and differential GPS and obtained the maximum vertical displacement of 9±0.5 m and right-lateral displacement of 2±0.5 m around the Zou’s house in Shaba Village. Though the near-surface deformation exhibits a normal faulting around Shaba Village, the dynamic environment has not changed on the whole. The NW wall of the fault uplifted but without gravity gliding as normally occurring on the hanging wall of a normal fault, which proves that the 9±0.5 m displacement should be the maximum coseismic vertical displacement of the May 12, 2008 Ms 8.0 Wenchuan earthquake.  相似文献   

7.
The mainshock of April 20, 2013 Sichuan Lushan M S7.0 earthquake was relocated using a 3-D velocity model. Double difference algorithm was applied to relocate aftershock sequences of Lushan earthquake. The locations of 2405 aftershocks were determined. The location errors in E-W, N-S and U-D direction were 0.30, 0.29 and 0.59 km on average, respectively. The location of the mainshock is 102.983°E, 30.291°N and the focal depth is 17.6 km. The relocation results show that the aftershocks spread approximately 35 km in length and 16 km in width. The dominant distribution of the focal depth ranges from 10 to 20 km. A few earthquakes occurred in the shallow crust. Focal depth profiles show fault planes dip to the northwest, manifested itself as a listric thrust fault. The dip angle is steep in the shallow crust and gentle in the deep crust. Although the epicenters of aftershocks distributed mainly along both sides of the Shuangshi-Dachuan fault, the seismogenic fault may be a blind thrust fault on the eastern side of the Shuangshi-Dachuan fault. Earthquake relocation results reveal that there is a southeastward tilt aftershock belt intersecting with the seismogenic fault with y-shape. We speculate it is a back thrust fault that often appears in a thrust fault system. Lushan earthquake triggered the seismic activity of the back thrust fault.  相似文献   

8.
Lushan M S7.0 earthquake: A blind reserve-fault event   总被引:1,自引:0,他引:1  
In the epicenter of the Lushan M S7.0 earthquake there are several imbricate active reverse faults lying from northwest to southeast, namely the Gengda-Longdong, Yanjing-Wulong, Shuangshi-Dachuan and Dayi faults. Emergency field investigations have indicated that no apparent earthquake surface rupture zones were located along these active faults or their adjacent areas. Only brittle compressive ruptures in the cement-covered pavements can be seen in Shuangshi, Taiping, Longxing and Longmen Townships, and these ruptures show that a local crustal shortening occurred in the region during the earthquake. Combining spatial distribution of the relocated aftershocks and focal mechanism solutions, it is inferred that the Lushan earthquake is classified as a typical blind reverse-fault earthquake, and it is advised that the relevant departments should pay great attention to other historically un-ruptured segments along the Longmenshan thrust belt and throughout its adjacent areas.  相似文献   

9.
As revealed by field investigations, the co-seismic surface rupture zone of the 2010 MS7.1 Yushu earthquake, Qinghai is a char-acteristic sinistral strike-slip feature consisting of three distinct sinistral primary ruptures, with an overall strike of 310°–320° and a total length of 31 km. In addition, an approximately 2-km-long en-echelon tensile fissure zone was found east of Longbao Town; if this site is taken as the north end of the rupture zone, then the rupture had a total length of ~51 km. The surface rupture zone is composed of a series of fissures arranged in an en-echelon or alternating relationship between compressive bulges and tensile fissures, with a measured maximum horizontal displacement of 1.8 m. The surface rupture zone extends along the mapped Garzê-Yushu Fault, which implicates it as the seismogenic fault for this earthquake. Historically, a few earthquakes with a magnitude of about 7 have occurred along the fault, and additionally traces of paleoearthquakes are evident that characterize the short-period recurrence interval of large earthquakes here. Similar to the seismogenic process of the 2008 Wenchuan earthquake, the Yushu earthquake is also due to the stress accumulation and release on the block boundaries resulting from the eastward expansion of Qinghai-Tibet Plateau. However, in contrast with the Wenchuan earthquake, the Yushu earthquake had a sinistral strike-slip mechanism resulting from the uneven eastward extrusion of the Baryan Har and Sichuan-Yunnan fault blocks.  相似文献   

10.
2017年8月8日四川九寨沟发生的Ms 7.0级地震是继2008年汶川Ms 8.0地震、2013年芦山Ms 7.0级地震后在青藏高原东缘发生的又一次强震。本文通过综合分析九寨沟Ms 7.0级地震及历史地震的震源机制解、余震和历史地震分布、区域应力场、活动断层等资料,来揭示九寨沟地震的发震构造与动力机制。初步研究结果表明:(1)此次地震的震中位于塔藏断裂、岷江断裂和虎牙断裂之间的交汇区,显示活动断裂的交汇区对此次地震的发生具有控制作用;(2)发震断裂为虎牙断裂,断裂走向为北西西向,倾向南西,倾角较陡,属于高倾角左旋走滑型地震;(3)震中位于虎牙断裂北段的北部地震空区,充填了1973年和1976年4次大于Mw6.0级地震空区;(4)此次地震位于2008年汶川Ms 8.0级地震的库仑应力增加区,应是汶川地震的应力传递和触发的结果;(5)此次地震位于巴颜喀拉块体的东北部顶角区,青藏高原东缘下地壳流向北东方向的挤出是驱动此次地震的动力机制。  相似文献   

11.
基于孕震断层多锁固段脆性破裂理论和新划定的3.6版汶川地震区,再次探讨了与2008年汶川地震有关的若干科学问题,包括该震是否为主震?该震、2013年芦山MS7.0地震、2017年九寨沟M_S7.0地震之间关系?该震是否存在复发周期?该震发生前是否存在显著物理前兆?该震与紫坪铺水库之间关系?研究结果表明:汶川地震并非汶川地震区当前地震周期主震,未来将发生MS8.0~8.3标志性地震;2013年芦山地震和2017年九寨沟地震有直接联系且均与汶川地震密切相关,两者同为下一次标志性地震前的两次显著预震;汶川地震区标志性地震及其未来主震是否存在复发周期目前尚不能作出明确判断;在汶川地震前,由于自1995年12月18日后其震源体的物理状态长期保持近似不变,故不可能观测到显著的中长期与短临物理前兆;紫坪铺水库对汶川地震孕育过程的影响很小,可以忽略。  相似文献   

12.
Relocation result shows that the aftershocks of the Lushan M S7.0 earthquake spatially distribute in a shape like “half bowl”, indicating that the rupture structure of the mainshock is a highly curved surface. Kinematic analysis reveals that a laterally varied dislocation pattern occurs on this curved fault even though a single relative horizontal movement controls slip on this fault. Reverse slip prevails on curved fault. However, significant normal slip is predicted near the edge of north flank. Moreover, the north flank features left-lateral slip while the south flank contrarily features right-lateral slip. The relative scope of aftershock distribution implies inadequate breaking of the curved fault during the mainshock, calling for the attention to potential earthquake risk on the neighboring portions of the coseismic rupture due to significant increase of the coseismic Coulomb stress. Coseismic stress modeling also reveals that it is unnecessary for the stress on ruptured part to be unloaded following the earthquakes on the curved fault. The coseismic stress loading on ruptured elements unveils the specialty of faulting for the Lushan earthquake and we conclude that this specialty is due to the highly curved fault geometry.  相似文献   

13.
为了进一步探讨龙门山断裂带深部结构,根据四川省地震局提供的地震原始资料,采用Hypo 2000对汶川大地震以及震后M≥2.0级余震进行重新定位。从2008年5月12日汶川发生8.0级大地震后,截止到2011年4月15日,获得了26 278个地震记录。重新定位后对结果的总结为:(1)主震发生在龙门山推覆构造带中央断裂中段的北川-映秀断裂上,余震主要沿龙门山断裂带方向延伸,呈南北分段分布。重新定位后的到时残差为±0.35s,水平误差为±1.32km,深度误差为±5km。(2)在主震附近的映秀、理县和黑水有一条北西向的余震带与龙门山断裂带的捩断层一致。(3)在青川附近(龙门山断裂带的北端),此段成为余震密集地区,这与历史上此地很少有地震发生不吻合。  相似文献   

14.
Moment tensor solution, rupture process and rupture characteristics of the great Wenchuan M8.0 earthquake are studied by using 39 long-period P and SH waveforms with evenly azimuth coverage of stations. Our results reveal that the Wenchuan M8.0 event consisted of 5 sub-events of Mw≥7.3 occurring succesively in time and space. Rupture started with a Mw7.3 introductory strike-slip faulting in the first 12 s, then within 12?40 s, two sub-events with Mw7.6 and Mw7.4 occurred within 80 km northeast from the init...  相似文献   

15.
2008年的汶川地震为分析龙门山与四川盆地形成演化过程中的山-盆相互作用及其动力耦合机制提供了新的视角与依据.在总结分析龙门山与川西前陆盆地地层构造特点的基础上,从汶川地震的基本特征分析入手,探讨了龙门山与四川盆地的现代动力耦合作用机制及其对川西深层油气二次运移聚散的影响.龙门山的形成演化与地震孕育主要受其西侧松潘-甘孜地块的逆冲和其东侧四川盆地的俯冲的非对称相向挤压控制.龙门山南北两段的地质构造与构造动力环境有较大差异.龙门山晚三叠世开始隆升,其形成早于青藏高原的隆升,与印-亚板块的碰撞无关;但喜马拉雅期以来的演化受印-亚板块碰撞和太平洋板块俯冲的影响.龙门山的冲断褶皱变形垂直于山脉走向从西北向东南,即从松潘-甘孜地块向四川盆地逐渐扩展;平行于龙门山走向发育的断裂带控制川西油气聚散带的分布,前山断裂带上盘及以西地层中的油气基本散失,山前隐伏断裂带有利于深生浅储气藏的形成.  相似文献   

16.
利用接收函数反演龙门山断裂带及邻区深部结构   总被引:1,自引:0,他引:1  
利用接收函数的方法通过接收震中距30°~90°、震级在5.5以上的远震事件反演龙门山断裂带及其邻区的深部结构,探索汶川地震形成原因。结果表明,扬子地台西缘的莫霍面向西侧倾斜缓降;处在龙门山推覆体范围之内的都江堰、汶川一带莫霍面起伏变化不大,在跨过龙门山中央断裂带后开始下降,向北降至黑水县附近后平缓上升。结合2005年10月至2007年4月远震P波波形资料接收函数反演结果:①2条被动源剖面均显示莫霍面在龙门山推覆体中央位置深度约43km的地方出现不同程度的陡降,说明该断裂带是地壳厚度的陡变带,为扬子地台和松潘甘孜地台的构造边界。②莫霍面深度向南陡降至最深约68km处后平缓上升,向北陡降至最深约58km处后平缓上升。表明松潘-甘孜地块东缘地壳厚度呈南深北浅、东深西浅分布。  相似文献   

17.
Based on high-rate (1 Hz) GPS data from the Sichuan GPS Continuous Observation Network on the footwall of the Longmenshan Fault, we have characterized the near-field surface movement process during the 5.12 Wenchuan Earthquake. Results show that the maximum deformation near the fault is larger than the deformation set. Stations on the northern segment of the fault moved towards the epicenter first, and then turned toward the vertical orientation of the fault. Deformation of stations on the southern segment is smaller and recovered. The initial motion at all of the stations was downward followed by periodic up and down movements. Comparing the displacement from high-rate GPS and accelerograph data, we can see that they are consistent prior to the arrival of the principal shock, but afterwards a 10 cm difference is found, even though they are synchronized and in phase. More work is yet to be done to explain this. This is the first time that actual the real near-field surface movements of an earthquake of M >7.0 have been determined in china. These measurements are therefore of high value for studies of surface rupture processes and the analysis of seismic wave travels paths in this region.  相似文献   

18.
 对四川芦山地震前1个月内的FY-2卫星云图与红外亮温数据分析发现,震前3d即4月17日的06:30—09:30,在青藏高原东部出现延展达数百千米的两条线性云,两者延伸交叉处正是芦山地震的震中位置。通过与汶川Ms 8.0级地震前数小时出现的线性云异常进行比较,认为龙门山断裂带强震前屡次出现的“无中生有”线性云异常现象,可能与青藏高原东部地下未知的隐伏构造及油气赋存有关,具有一定的临震指示性,应该作为该地区地震遥感监测的重点。今后,在全球综合地球观测系统(GEOSS)大数据的支持下,考虑孕震过程中的地球系统多圈层作用与耦合效应,将开展遥感多参数异常时空特征及其关联性分析,为解开该地区的线性云异常之谜提供科学依据。  相似文献   

19.
蒋涛  崔圣华 《科学技术与工程》2022,22(31):13662-13671
近年来,川滇地区相继发生了2008年汶川Ms 8.0级地震、2013年芦山Ms 7.0级地震、2014年鲁甸Ms 6.5级地震以及2017年九寨沟Ms7.0级地震,4次地震均引发了大量的地震滑坡灾害。通过统计分析,从地震、地形地貌和地质3个大类因素中,选取地面峰值加速度(ground peak acceleration, PGA)、地震烈度、距断层距离、地层岩性、高程、坡度、坡向7个因子,对比分析此4次强震诱发滑坡分布规律。研究发现它们存在共性特征:(1)4次地震均呈现出滑坡分布(数量和密度)与PGA和震级的正相关关系;(2)地质地貌越复杂地区(沟谷发育、坡降大)滑坡数量越多;(3)滑坡分布最大距离随地震震级增加而增加。此外,也发现了差异性特征:(1)在最大影响距离0.2倍的近断层区域,汶川地震滑坡占76%,而其他3次地震仅占27%;(2)滑坡在相对软弱地层(第四系地层、软层等)分布数量反而较硬岩区滑坡分布最少。针对差异性,从发震断裂性质、震级、地层岩性、地震烈度、断层错动方向讨论了成因。  相似文献   

20.
汶川地震后的思考   总被引:1,自引:0,他引:1  
2008年5月12日四川省汶川县发生8.0级地震,这是自1976年7月28日唐山7.8级地震后,中国发生的最大地震.它震级高、强度大、余震多,范围广、次生灾害大、伤亡人数多、经济损失大,给汶川地震灾区带来深重的灾难.我国西南及周边地区地处欧亚板块与印度板块之间,近年来地震活动频繁.2008年5月12日青藏高原东向挤压,导致龙门山冲断带向东南逆冲,撞击四川盆地,引发汶川8.0级大地震.人类对客观世界、自然环境及发展规律还认识不够;特别是对地震机理、机制,地球板块运动,以及深达数十、数百km的震源及其活动规律等,远未认识.必须加强对地震机理、机制、地球板块运动、震源活动规律及趋势的探讨、认识与科学研究;逐步提高对地震的预警与预报,预防地震及地质灾害.贯彻执行防震减灾法律条令,切实做好防震减灾及灾后重建工作.保护人民生命和财产安全,保障社会主义建设顺利进行,构建和谐社会,确保长治久安.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号