首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 439 毫秒
1.
采用溶胶-凝胶法制备了纳米级Li2SO4+Li2WO4+Al2O3复合质子传导膜,考察了在不同H2S气体含量、体积流量和操作温度下,结构为H2S、(复合MoS2阳极催化剂)/复合质子传导膜/(复合NiO阴极催化剂)、空气的燃料电池的电化学特性,并比较了MoS2与复合MoS2催化剂的性能.结果表明:H2S含量和体积流量增加,提高了阳极侧气体扩散速率和电化学活性组分,使燃料电池的电压、输出电流与功率密度提高,电化学性能变好;即使气体中的H2S含量低达5%(摩尔分数)时,也可作为电池的燃料用来发电;操作温度增加,质子传导膜的电传导率和电化学反应速率增加,电池的输出电流与功率密度提高;复合MoS2催化剂比MoS2催化剂具有更好的性能和化学稳定性;当采用纯H2S作为燃料,复合MoS2作为阳极催化剂,通入阳极和阴极侧的H2S和空气的体积流量分别为35mL/min和100mL/min,操作温度为650、700和750℃时,燃料电池最大输出功率密度分别为12.4、52.9和130.0mW/cm2,最大电流密度分别为45、281和350mA/cm2.  相似文献   

2.
中温质子传导膜H2S燃料电池电极催化剂   总被引:2,自引:2,他引:0  
研究了基于三相边界层理论设计的中温质子传导膜H2S燃料电池的阳极与阴极催化剂.考察了3种阳极催化剂Pt、MoS2及复合金属硫化物(MoS2/N iS)电化学氧化硫化氢的性能和在硫化氢环境下的化学稳定性,发现MoS2和复合MoS2/N iS催化剂比Pt具有更好的催化活性,但MoS2在温度超过450℃时会升华,而含有Mo和过渡金属N i的复合MoS2/N iS催化剂在操作条件下很稳定.文中还研究了两种阴极催化剂Pt与复合N iO催化剂的电化学性能,发现复合N iO催化剂比Pt电极具有更低的过电位和更好的电化学性能;虽然复合电极的导电性比Pt差些,但是这一问题可以通过在电极中掺杂10%的Ag粉解决.由H2S、(MoS2 N iS Ag 电解质 淀粉)/Li2SO4-A l2O3/(N iO Ag 电解质 淀粉)、空气构成的燃料电池在101.13 kPa和600~680℃下的电化学特性研究表明,电池最大输出电流密度和功率密度在680℃时分别达到240mA/cm2和70mW/cm2.  相似文献   

3.
制备和研究了具有H2S,(MoS2 NiS Ag)/Li2SO4 Al2O3/(NiO Ag),air结构的H2S固体氧化物燃料电池用于产生电能和脱除燃料气体中的H2S.电池在600~650 ℃和大气压下运行.燃料电池的电化学性能受电解膜的组成,电极材料和操作温度影响.掺杂了Al2O3 和少量H3BO4的Li2SO4质子传导膜可以提高膜的机械强度和性能,改善膜的致密性和电池的性能.适宜的Li2SO4 和 Al2O3 比为3~4∶1(质量比), 适宜掺杂H3BO4的量为2%~5%(w).掺杂了Ag粉和电解质的金属硫化物复合阳极在H2S气流下很稳定和性能很好, 掺杂了Ag粉和电解质的的NiO复合阴极在去除H2S时性能优于Pt电极催化剂.在650 ℃电池的最大输出功率密度为70 mW·cm -2,最大电流密度为180 mA·cm -2.然而,电池长期运行的稳定性实验仍有待研究.  相似文献   

4.
制备了以Li2SO4为基体的复合质子传导膜。采用电化学阻抗波谱分析法(EIS)研究了掺杂不同组分如Li2WO4、Na2SO4和Al2O3、以及掺杂不同的比例时制备不同厚度的复合质子传导膜的离子(电)传导率。在Li2SO4中掺杂适宜比例的Li2WO4或Na2SO4可提高膜的离子传导率,掺杂Li2WO4比掺杂Na2SO4制备的复合膜具有更高的离子传导率和较佳的性能。虽然掺杂Al2O3会稍微降低膜的质子传导率,但确可以提高膜的机械性能。膜的厚度减少,其离子传导率增加,但膜太薄,气体容易从膜一侧渗透到另一侧(crossover)。采用扫描电镜(SEM)对复合膜进行了表征,掺杂Li2WO4制备的复合膜结构较致密和紧凑、性能较好。实验结果表明,适宜的膜厚为0.8mm,由Li2SO4、Li2WO4和Al2O3制备的复合膜适宜的组成为75wt%(90mol%Li2SO4+10mol%Li2WO4)+25wt%Al2O3,其离子传导率在600、650、700和750℃时高达0.16、0.38、0.46和0.52Scm1。研究了以H2S为燃料、复合Mo-Ni-S为阳极、复合Li2SO4为质子传导膜、复合NiO为阴极、空气作为氧化剂的单电池的电化学性能,Li2SO4+Li2WO4+Al2O3复合膜的电池性能较优。  相似文献   

5.
复合Li2SO4质子传导膜的制备及电化学性能   总被引:1,自引:1,他引:0  
制备了以Li2SO4为基体、Al2O3为填充物的复合质子传导膜.采用电化学阻抗波谱分析法(EIS)研究了掺杂不同组分(Li2WO4或Na2SO4)以及掺杂不同比例时制备的不同厚度的复合质子传导膜的离子(电)传导率.分析结果表明,在Li2SO4中掺杂一定比例的Li2WO4或Na2SO4均可提高膜的离子传导率,Li2WO4对复合膜性能的影响优于Na2SO4.扫描电镜(SEM)分析显示,掺杂Li2WO4的复合膜结构更加致密和紧凑.实验结果表明,由Li2SO4、Li2WO4和Al2O3制备的复合膜的适宜组成为75%Li2SO4/Li2WO4混合物(Li2SO4与Li2WO4摩尔比为9: 1) 25%Al2O3,其离子传导率在600,650,700和750 ℃时分别高达0.16,0.38,0.46和0.52 S/cm,适宜的膜厚为0.8 mm.文中还研究了以H2S为燃料、复合Mo-Ni-S为阳极、复合Li2SO4为质子传导膜、复合NiO为阴极、空气为氧化剂的单电池的电化学性能,发现Li2SO4 Li2WO4 Al2O3复合膜的电化学性能较优.  相似文献   

6.
应用溶胶-凝胶法制备了中温硫化氢固体氧化物燃料电池的纳米复合质子传导膜。用SEM和EDX对纳米复合膜进行了观察和表征,并与传统工艺制备的电解膜(微米级)的性能进行了比较。探讨了微米级和纳米级的复合Li2SO4 Al2O3膜的离子传导性随温度变化规律。与传统的工艺采用相同组分制备的微米级电解膜相比,纳米复合膜的微观结构、致密性、机械强度和离子传导性均得到改善,而最显著改善是膜的离子传导性能。纳米复合Li2SO4 Al2O3膜的中温硫化氢固体氧化物燃料电池的性能较稳定,察觉不到膜两侧的气体穿过膜扩散到另一侧。在750℃和101.13kPa下,电池的最大输出功率密度为135mW.cm-2,最大电流密度为480mA.cm-2。  相似文献   

7.
一种以H2S为燃料的固体氧化物燃料电池   总被引:3,自引:3,他引:0  
研究了在一个大气压和750~850℃下,具有H2S、(MoS2 NiS Ag)/YSZ/Pt和空气结构的固体氧化物燃料电池的电化学性能,发现升温有助于增强电解质的离子传导性,使电池性能变好.在750℃下,阳极通入H2S、阴极通入空气时,电池的最大电流密度和最大功率密度分别达800mA/cm^2和84mW/cm^2;在850℃下,电池的最大电流密度和功率密度分别达1750mA/cm^2和200mW/cm^2.  相似文献   

8.
针对质子交换膜燃料电池制造技术实用化的瓶颈,研究了质子交换膜燃料电池低成本制造与性能优化问题,建立了质子交换膜燃料电池半个单池的三维计算模型,采用计算流体动力学技术对阳极燃料气体(H2)流场进行了数值模拟;以阳极最大燃料气体(H2)利用率为目标优化流场板沟槽尺寸,设计了一种操作成本低、容易批量生产的板料冲压成形薄金属双极板结构,可增大电池组体积比功率和提高燃料电池的性能;利用弹塑性有限元方法模拟阳极流场板冲压成形过程,验证了板料冲压成形金属双极板结构的可行性.  相似文献   

9.
质子交换膜燃料电池膜电极的性能直接决定燃料电池的输出性能,超薄质子交换膜的使用可以有效提升燃料电池峰值功率。该文将静电纺丝与直接膜沉积技术相结合,制备聚芳醚砜材料并纺丝成为纳米纤维覆于气体扩散电极上,作为薄膜增强层,再以商业全氟磺酸树脂分散液直接沉积成膜制得阴极和阳极。复合薄层膜厚度约为13μm,氢空电池的峰值功率密度为1.18 W/cm~2,与厚度相近的商业Nafion~? NC700膜的峰值功率密度0.96 W/cm~2相比,提高了23%。通过对膜电极进行综合优化,在氢氧条件下电池峰值功率密度可达3.55 W/cm~2,且阴极湿度降低对电池影响不大。利用聚芳醚砜纳米纤维作为增强层制备超薄膜电极具有优异性能,在低湿度条件下亦有高性能输出,具有广泛应用前景。  相似文献   

10.
开发了一种制备纳米复合Li_2SO_4质子传导电解质和膜电极组装(MEA)的工艺.与传统的丝网涂布工艺不同,新的制备工艺是将阳极、阴极催化剂与纳米复合电解质同时一次压制成MEA.这就使得MEA的设计具有某些结构上的特点,由于膜厚减少和电极与电解质之间的接触良好,可以降低电解质与电极之间的欧姆电阻,提高其机械和导电性能,增加膜的质子传导性以及改善电池的性能.用电子扫描电镜(SEM)和电化学阻抗分析技术对电解质薄膜进行了表征,结果表明,纳米复合材料改善了MEA的总体性能.由于膜的致密性和不透气性,不会发生气体穿透过膜的现象.MEA在H_2S环境中很稳定.电池结构为H_2S,(MoS_2/NiS Ag 电解质量 淀粉) /Li_2SO_4 Al_2O_3/(NiO Ag 电解质量 淀粉),空气、MEA厚为0.8mm、电解质组成为65% Li_2SO_4 35% Al_2O_3的单电池在680℃时产生最大功率密度为130mW/cm~2,相应的电流密度为200mW/cm~2.  相似文献   

11.
质子交换膜燃料电池多孔介质中水的两相迁移   总被引:1,自引:0,他引:1  
在混合流动模型的基础上,建立了一个新的二维两相流模型来研究质子交换膜燃料电池内水分的传递规律和分布状态,在该模型中,催化剂层作为一个有厚度的实体包含在电极中.模型耦合了质子交换膜燃料电池电极中的流动方程.组分方程、催化剂层和质子交换膜中的电势和电流密度分布方程,可以应用在质子交换膜燃料电池的阴极,也可以使用在阳极.同时,模型还考虑了相变引起的液相和气相间的动量变化,重点模拟了水分在燃料电池的阴极、阳极和质子交换膜中的传递规律及其分布状态.模拟结果显示:升高加湿温度、提高电流密度和降低电池温度都会使电池质子膜中的水分含量增大,质子传导率升高,也会使阴极中液态水含量增加,阴极浓差极化加剧.  相似文献   

12.
以玻璃纤维膜为基底制备了具有三元结构的新型MoS2/Ag/TiO2光催化膜. 该复合催化剂膜具有多层结构,能够在模拟太阳光和紫外光下进行产氢反应. 该光催化膜可以用于新型的双室光催化反应器中进行同步产氢与有机物降解. 在光催化过程中,氢气在反应器的阴极室产生,而有机物在阳极室进行降解. 当Ag负载量为1wt%, TiO2负载量为160wt%时,MoS2/Ag/TiO2复合催化膜的比产氢速率达到了最大值,在模拟太阳光下为产氢速率为85 mmol·h-1·m-2(产二氧化碳速率为88 mmol·h-1·m-2),能量转化较率最高可达0.85%,是纯TiO2 的2.3倍;在紫外光下产氢速率为68 mmol·h-1·m-2,是纯TiO2的1.2倍. 在光照下TiO2 和 MoS2同时受光的激发产生光生电子与空穴,由于Ag功函数比TiO2 的功函数低,电子从TiO2导带上转移至Ag再转移到MoS2价带上形成TiO2→Ag→MoS2 的电子传递模式.因此,能更有效的实现电子与空穴的分离,提高产氢的效率.  相似文献   

13.
Analysis of Water Management in Proton Exchange Membrane Fuel Cells   总被引:2,自引:0,他引:2  
Introduction Fuel cells provide an environmentally friendly high- efficiency power source that is not limited by the Carot efficiency. The proton exchange membrane fuel cell (PEMFC) is considered to be the most promising can- didate for electric vehicles …  相似文献   

14.
为研究交指流场质子交换膜燃料电池的输出性能,分析影响其性能的因素,寻找改善其性能的可行措施,探讨了使用交指流场流道的必要性和优越性,建立了包括质子交换膜燃料电池阴极/阳极侧流道、扩散层和催化层以及质子交换膜在内的完整的稳态、三维、两相数学模型.基于计算流体力学方法,用该模型对交指流场质子交换膜燃料电池的全流场进行了统一的数值计算以模拟其输出性能,分析了流场流型、氧化剂种类、反应气体进气速度、质子交换膜厚度和双极板筋宽对质子交换膜燃料电池输出性能的影响,确定了提高质子交换膜燃料电池输出性能的一些方法.将理论模型的模拟计算结果与实验结果进行比较,两者较为吻合.  相似文献   

15.
针对新型螺旋形加压聚合物电解质膜燃料电池,提出了一种液态水生成和输运效应的数值模型.该数值模型基于燃料电池的物理机理、流体流动、传热导、多孔介质中的传质、电化学反应、含相变的多相流动、电流输运、多孔介质和固体导电区域中的位势场以及穿过聚合物膜的水的输运设计优化过程.在分析中还使用了燃料电池模型.例如,电化学模型--用于预测局部电流密度和电压分布;位势场模型--用于预测多孔介质以及固体导电区中的电流和电压;多相混合物模型--用于预测在多孔扩散层中的液态水和气体流;薄膜多相模型--用于研究气体流道中的液态水流.最后给出了聚合物电解质膜燃料电池液态水生成和输运的理论模型的数值结果,包括催化层和膜中的H2,O2和H2O的质量和克分子数的等值线图.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号