共查询到20条相似文献,搜索用时 15 毫秒
1.
Modulation of ATP-sensitive K+ channels in skeletal muscle by intracellular protons 总被引:14,自引:0,他引:14
N W Davies 《Nature》1990,343(6256):375-377
Since their discovery in cardiac muscle, ATP-sensitive K+(KATP) channels have been identified in pancreatic beta-cells, skeletal muscle, smooth muscle and central neurons. The activity of KATP channels is inhibited by the presence of cytosolic ATP. Their wide distribution indicates that they could have important physiological roles that may vary between tissues. In muscle cells the role of K+ channels is to control membrane excitability and the duration of the action potential. In anoxic cardiac ventricular muscle KATP channels are believed to be responsible for shortening the action potential, and it has been proposed that a fall in ATP concentration during metabolic exhaustion increases the activity of KATP channels in skeletal muscle, which may reduce excitability. But the intracellular concentration of ATP in muscle is buffered by creatine phosphate to 5-10 mM, and changes little, even during sustained activity. This concentration is much higher than the intracellular ATP concentration required to half block the KATP-channel current in either cardiac muscle (0.1 mM) or skeletal muscle (0.14 mM), indicating that the open-state probability of KATP channels is normally very low in intact muscle. So it is likely that some additional means of regulating the activity of KATP channels exists, such as the binding of nucleotides other than ATP. Here I present evidence that a decrease in intracellular pH (pHi) markedly reduces the inhibitory effect of ATP on these channels in excised patches from frog skeletal muscle. Because sustained muscular activity can decrease pHi by almost 1 unit in the range at which KATP channels are most sensitive to pHi, it is likely that the activity of these channels in skeletal muscle is regulated by intracellular protons under physiological conditions. 相似文献
2.
Single Na+ channel currents observed in cultured rat muscle cells 总被引:28,自引:0,他引:28
The voltage- and time-dependent conductance of membrane Na+ channels is responsible for the propagation of action potentials in nerve and muscle cells. In voltage-step-clamp experiments on neurone preparations containing 10(4)-10(7) Na+ channels the membrane conductance shows smooth variations in time, but analysis of fluctuations and other eivdence suggest that the underlying single-channel conductance changes are stochastic, rapid transitions between 'closed' and 'open' states as seen in other channel types. We report here the first observations of currents through individual Na+ channels under physiological conditions using an improved version of the extracellular patch-clamp technique on cultured rat muscle cells. Our observations support earlier inferences about channel gating and show a single-channel conductance of approximately 18 pS. 相似文献
3.
4.
Charybdotoxin, a protein inhibitor of single Ca2+-activated K+ channels from mammalian skeletal muscle 总被引:1,自引:0,他引:1
The recent development of techniques for recording currents through single ionic channels has led to the identification of a K+-specific channel that is activated by cytoplasmic Ca2+. The channel has complex properties, being activated by depolarizing voltages and having a voltage-sensitivity that is modulated by cytoplasmic Ca2+ levels. The conduction behaviour of the channel is also unusual, its high ionic selectivity being displayed simultaneously with a very high unitary conductance. Very little is known about the biochemistry of this channel, largely due to the lack of a suitable ligand for use as a biochemical probe for the channel. We describe here a protein inhibitor of single Ca2+-activated K+ channels of mammalian skeletal muscle. This inhibitor, a minor component of the venom of the Israeli scorpion, Leiurus quinquestriatus, reversibly blocks the large Ca2+-activated K+ channel in a simple biomolecular reaction. We have partially purified the active component, a basic protein of relative molecular mass (Mr) approximately 7,000. 相似文献
5.
Nerve axons in the central and peripheral nervous system are normally surrounded by satellite cells. These cells, known as Schwann cells in the peripheral nervous system, interact with axons to form a myelin sheath, so allowing nerve impulses to proceed at high speed. Schwann cells are thought to differ from neurones in their membrane properties in one important aspect: they lack excitability. Using the patch-clamp technique we have now measured directly the ionic currents across the membrane of single Schwann cells cultured from newborn rabbits. Surprisingly, we found that these Schwann cells possess voltage-gated sodium and potassium channels that are similar to those present in neuronal membranes. 相似文献
6.
Neurons of the neostriatum are richly innervated by cholinergic neurons of intrinsic origin. Both pre- and post-synaptic muscarinic receptors mediate the effects of acetylcholine (ACh). Activation of these receptors is functionally significant, particularly in Parkinson's disease. Current-clamp studies indicate that muscarinic receptors serve to decrease the responsiveness of neostriatal neurons to excitatory inputs. Here we present evidence that this effect is caused, in part, by the muscarinic modulation of the A-current, a transient outward potassium current. The voltage dependence of this current suggests that normally it enhances spike repolarization and slows discharge rate, but does not affect 'synaptic integration'. We find that under the influence of muscarinic agonists, the voltage dependence of A-current activation and inactivation is shifted towards more negative membrane potentials and the peak conductance is increased. Therefore, at relatively hyperpolarized resting potentials, ACh transiently alters the functional role of the A-current, allowing it to suppress excitatory inputs and further slow the discharge rate. But at relatively depolarized resting potentials, ACh increases excitability by removing the A-current through inactivation. 相似文献
7.
O F Hutter 《Nature》1969,224(5225):1215-1217
8.
Single glutamate-activated channels in locust muscle. 总被引:7,自引:0,他引:7
9.
The extracellular patch clamp technique developed by Neher et al. to record the responses of single channels in skeletal muscle has provided firm evidence for the two-state nature of the conductance event in nicotinic endplate channels. We report here the use of the extracellular patch technique to record single-channel responses from tissue-cultured chick skeletal muscle cells. The temperature dependence of channel conductance and gating kinetics shows no evidence of discontinuous behaviour between 17 and 37 degrees C. 相似文献
10.
It has been known for some years that skeletal muscle develops a high potassium permeability in conditions that produce rigor, where ATP concentrations are low and intracellular Ca2+ is high. It has seemed natural to attribute this high permeability to K channels that are opened by internal Ca2+, especially as the presence of such channels has been demonstrated in myotubes and in the transverse tubular membrane system of adult skeletal muscle. However, as we show here, the surface membrane of frog muscle contains potassium channels that open at low internal concentrations of ATP (less than 2 mM). ATP induces closing of these channels without being split, apparently holding the channels in one of a number of closed states. The channels have at least two open states whose dwell times are voltage-dependent. Surprisingly, we find that these may be the most common K channels of the surface membrane of skeletal muscle. 相似文献
11.
Some of the most compelling evidence for the existence of ionic channels in cell membranes comes from direct recording of quantised current jumps generated by the opening and closing of individual channels. Single-channel jumps have been extensively studied for lipid bilayer membranes doped with various channel-forming additives. Recently agonist-induced single-channel currents were detected in denervated frog muscle by use of extracellular electrodes, which can isolate the current from a small area of membrane. The current jumps provide a means for the direct test of many of the inferences about ionic channels which have come from electrical noise analysis. In this report we present measurements of single-channel currents induced by the agonist carbamylcholine in tissue-cultured mammalian muscle. These measurements confirm the earlier noise studies on tissue culture preparations. Recordings of single-channel currents induced by the agonist, suberyldicholine, in avian muscle are presented by Nelson and Sachs. 相似文献
12.
13.
14.
Neuronal function depends crucially on the spatial segregation of specific membrane proteins, particularly the segregation associated with sites of synaptic contact. Understanding the factors governing this localization of proteins is a major goal of cellular neurobiology. A conspicuous example of synaptic specialization is the almost exclusive localization of vertebrate skeletal muscle acetylcholine (ACh) receptors to the subsynaptic membrane of the neuromuscular junction (for example, refs 1,2). The localization of other membrane proteins in skeletal muscle has been much less studied, but a knowledge of their distribution is crucial for understanding the factors governing regional specialization. We have explored the distribution in muscle of the voltage-gated Na channel responsible for the action potential using the loose patch-clamp technique, and have measured Na currents in 5-10 micron-diameter membrane patches as a function of distance from the end plate region of snake and rat muscle fibres. Here we report that the Na current density immediately adjacent to the endplate is 5-10-fold higher than at regions away from the endplate. The increased Na current density falls off rapidly with distance, reaching the background level 100-200 micron from the endplate. Although one might expect ACh receptors to be concentrated near the region of ACh release, such a concentration for Na channels, which propagate the impulse throughout the length of the cell, is surprising and suggests that factors similar to those responsible for concentrating ACh receptors at the endplate also operate to concentrate Na channels. 相似文献
15.
Beta-adrenoceptor agonists increase membrane K+ conductance in cardiac Purkinje fibres 总被引:1,自引:0,他引:1
D C Gadsby 《Nature》1983,306(5944):691-693
Hormonal modulation of the ionic conductance of cell membranes is a topic of considerable current interest; it has a major role, for example, in the improved performance of the vertebrate heart elicited by sympathetic nerve stimulation or by circulating catecholamines, an effect involving enhanced calcium influx. beta-Agonist catecholamines also abbreviate the action potential of cardiac Purkinje fibres, and increase the resting potential in a variety of cells, including cardiac cells, a hyperpolarization usually attributed to stimulation of the electrogenic Na+/K+ pump. We show here that nanomolar concentrations of beta-catecholamines cause hyperpolarization of cardiac Purkinje fibres, not by increasing Na+/K+ pump current, but by increasing resting membrane K+ conductance. The hyperpolarization and shortening of the action potential should increase availability of Na+ channels and reduce the refractory period, effects tending to safeguard impulse propagation through the ventricular conducting system despite the increased heart rate caused by beta-catecholamine action on the sinus node pacemaker. 相似文献
16.
Single Ca2+-activated nonselective cation channels in neuroblastoma 总被引:27,自引:0,他引:27
17.
Opening of dihydropyridine calcium channels in skeletal muscle membranes by inositol trisphosphate 总被引:3,自引:0,他引:3
In many non-muscle cells, D-inositol 1,4,5-trisphosphate (InsP3) has been shown to release Ca2+ from intracellular stores, presumably from the endoplasmic reticulum. It is thought to be a ubiquitous second messenger that is produced in, and released from, the plasma membrane in response to extracellular receptor stimulation. By analogy, InsP3 in muscle cells has been postulated to open calcium channels in the sarcoplasmic reticulum (SR) membrane, which is the intracellular Ca2+ store that releases Ca2+ during muscle contraction. We report here that InsP3 may have a second site of action. We show that InsP3 opens dihydropyridine-sensitive Ca2+ channels in a vesicular preparation of rabbit skeletal muscle transverse tubules. InsP3-activated channels and channels activated by a dihydropyridine agonist in the same preparation have similar slope conductance and extrapolated reversal potential and are blocked by a dihydropyridine antagonist. This suggests that in skeletal muscle, InsP3 can modulate Ca2+ channels of transverse tubules from plasma membrane, in contrast to the previous suggestion that the functional locus of InsP3 is exclusively in the sarcoplasmic reticulum membrane. 相似文献
18.
It is known that glucose-induced depolarization of pancreatic B-cells is due to reduced membrane K+-permeability and is coupled to an increase in the rate of glycolysis, but there has been no direct evidence linking specific metabolic processes or products to the closing of membrane K+ channels. During patch-clamp studies of proton inhibition of Ca2+-activated K+ channels [GK(Ca)] in B-cells, we identified a second K+-selective channel which is rapidly and reversibly inhibited by ATP applied to the cytoplasmic surface of the membrane. This channel is spontaneously active in excised patches and frequently coexists with GK(Ca) channels yet is insensitive to membrane potential and to intracellular free Ca2+ and pH. Blocking of the channel is ATP-specific and appears not to require metabolism of the ATP. This ATP-sensitive K+ channel [GK(ATP)] may be a link between metabolism and membrane K+-permeability in pancreatic B-cells. 相似文献
19.
Single channel recordings of K+ currents in squid axons 总被引:18,自引:0,他引:18
Ionic currents from individual K+ channels in squid axon membrane have been recorded. At hyperpolarizing membrane voltages, unit events occur as widely spaced rectangular pulses with short interruptions. The frequency of occurrence of the units increases strongly when the membrane is depolarized. 相似文献
20.
A developmental change in the ionic basis of the inward current of action potentials has been observed in many excitable cells. In cultured spinal neurones of Xenopus, the timing of the development of the action parallels that seen in vivo. In vitro, as in vivo, neurones initially produce action potentials of long duration which are principally Ca-dependent; after 1 day of development the impulse is brief and primarily Na-dependent. At both ages, however, both inward components are present and the mechanism underlying shortening of the action potential is unknown. One possibility is that the outward currents change during development. Using the patch-clamp technique, we have recorded single K+-channel currents in membrane patches isolated from the cell bodies of cultured embryonic neurones. The unitary conductance of one class of K+ channels was approximately 155 pS and depolarization increased the probability of a channel being open. Neither conductance nor voltage dependence seemed to change with time in culture; in contrast, the Ca2+-sensitivity of this K+ channel increased. In younger neurones, Ca2+-sensitivity was greatly reduced or absent, whereas in more mature neurones, the activity of this channel was Ca-dependent. Such a change could account for the shortening of the action potential duration by increasing the relative contribution of outward currents. 相似文献