首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 671 毫秒
1.
文章讨论了采用真空热蒸镀的方法制备了适用于夜间照明的有机发光器件.器件选用热活化延迟荧光材料DPEPO作为发光层主体材料,热活化延迟荧光材料DMAC-DPS作为蓝光掺杂剂,PO-01作为橙光发射的磷光掺杂剂.器件结构为ITO/TCTA(20 nm)/DPEPO:x%DMAC-DPS:0.6%PO-01(15 nm)/TAZ(20 nm)/LiF(0.8 nm)/Al(100 nm).通过改变DMAC-DPS的掺杂浓度来研究器件性能的变化.实验结果表明:当x=20时,器件的最大电流效率可达26.19 cd/A,最大功率效率可达7.47 lm/W,最大亮度可达4 619 cd/m~2,器件的发光效率较高.  相似文献   

2.
利用真空蒸镀的方法,制备了结构为ITO/NPB(20 nm)/MCP(3 nm)/MCP:Firpic(z%,x nm)/TPBi(10nm)/Alq3(30 nm)/Cs2CO3:Ag2O(2 nm,20%)/Al(100 nm)的器件.研究了不同掺杂浓度(z=5,8,10和12)和不同厚度(x=5,10,15,20和25)对器件性能的影响.首先确定MCP:Firpic层的厚度为5 nm,调节掺杂浓度.结果表明当掺杂浓度为10%时,器件的效率和亮度都为最大.驱动电压为8 V时,最大电流效率为6.996 cd/A;驱动电压为15 V时,最大亮度为10 064 cd/m2.在10%的掺杂浓度下,调节MCP:Firpic层的厚度.当厚度为20 nm时,器件的性能较好.驱动电压为13 V时,电流密度为2.248 mA/cm2,效率为10.35 cd/A;驱动电压为21 V时,电流密度为304.16 mA/cm2,亮度为21 950 cd/m2.  相似文献   

3.
利用真空蒸镀的方法制备了结构为:ITO/m-MTDATA(20 nm)/NPB(15 nm)/DPAVBi:Rub(x nm,2%)/Alq3(25 nm)/Li F(0.5 nm)/Al(100 nm)的器件.研究了掺杂层的不同厚度(x=15,25和30 nm)对器件性能的影响.结果是当掺杂层的厚度为25 nm时,器件的性能最好.当电流密度为524.22 m A/cm2时,获得最大电流效率,为4.37 cd/A;获得最大亮度,为22 890 cd/m2.器件的高亮度与高效率主要是因为主客体之间的能量转移很充分.  相似文献   

4.
采用7-N,N-二乙胺基-香豆素-3-羧酸(DCCA)为掺杂剂,4,4'-二(9-咔唑基)联苯(CBP)为基质,设计制备了掺杂蓝光器件ITO/2-TNATA(5 nm)/NPB(40 nm)/CBP:DCCA(30 nm)/Bu-PBD(30 nm)/LiF(1 nm)/Al(100 nm),探讨了掺杂质量分数为1%和2%时器件的发光性能.结果表明2个掺杂器件均具有8 V左右的启亮电压,DCCA掺杂质量分数为1%时器件的性能较好,电致发光(EL)峰与其稀溶液的光致发光(PL)峰一致,位于456 nm,而且EL发光强度随电压的改变而改变,最大亮度594 cd·m-2时的电压为12.5 V.当电流密度为20 mA·cm-2时,器件的发光效率为1.01 cd·A-1.  相似文献   

5.
利用真空蒸镀的方法,制备了结构为:ITO/m-MTDATA(20 nm)/NPB(10 nm)/Rubrene(0.2 nm)/DPVBi:BCzVBi(x nm,10%)/Alq_3(20 nm)/Cs_2CO_3:Ag_2O(2 nm,20%)/Al(100 nm)的器件.研究了掺杂层的不同厚度(x=20,25和30)对器件性能的影响.结果是当掺杂层的厚度为25 nm时,器件的性能最好.电流密度为285.064 m A/cm~2时,器件B获得最大亮度为13 560 cd/m~2,同时获得最大电流效率,为4.76 cd/A.器件的高亮度与高效率主要是因为主客体之间的能量转移很充分.  相似文献   

6.
主要介绍结构为MeO-TAD(xnm)/NPB(40nm)/DPVBi(30nm)/Alq(30nm)/LiF(0.5nm)/AL的蓝色有机电致发光器件,空穴注入层MeO-TAD的厚度x按照0nm、1.0nm、1.5nm、2.0nm变化,其它层保持不变.当x=2nm时,其器件性能最好,在15V时亮度达到最大,为5876cd/m2.器件的开启电压较低,在5V的驱动电压下亮度达到10.5cd/m2,器件在8V电压时电流效率达到最大,为3.22cd/A;且器件的色坐标稳定,在5V到13V的驱动电压下几乎不发生改变,稳定在x=0.17、y=0.18附近,属于很好的蓝光发射.  相似文献   

7.
制备了基于N-BDAVBi的高效率双发光层蓝色有机电致发光器件(OLED),器件中将蓝色荧光染料NBDAVBi作为客体发光材料分别掺入主体材料TCTA和TPBi中,器件结构为ITO/m-MTDATA(40 nm)/NPB(10nm)/TCTA:N-BDAVBi(15 nm)/TPBi:N-BDAVBi(15 nm)/TPBi(30 nm)/LiF(0.6 nm)/Al(150 nm),最大电流效率达到8.44 cd/A,CIE色坐标为(0.176,0.314),并且在12 V的电压下,亮度最大达到11 860 cd/m2,分别是单发光层结构器件的1.85倍和1.2倍.器件性能提高主要归因于双发光层扩大了载流子复合区域,主客体间的Forster能量转移.  相似文献   

8.
采用两种经典传统荧光材料作为发光层,制备了非掺杂白色有机电致发光器件(WOLEDs).在器件中两层苝(perylene)以薄层的方式分别置于双极性主体材料CBP(4,4’-di (N-carbazole)biphyenyl)两侧作为蓝光发射体,一层超薄的红荧烯(rubrene)插入CBP中作为橙光发射体.通过改变rubrene在CBP中的插入位置获得了高效率白色荧光器件,最高电流效率为6.6 cd/A(外量子效率为2.6%),最高亮度为18 480 cd/m2,且其中一种器件在200 mA/cm2的高电流密度下,CIE(commission internationale de l’eclairage)色坐标可达理想白光平衡点(0.33,0.33).  相似文献   

9.
为研究探讨石墨烯薄层对有机电致发光器件(OLEDs)性能的影响,制备了一组OLEDs,其基本结构为ITO/NPB(50 nm)/Alq3(80 nm)/LiF(0.5 nm)/Al.分别采取不插入石墨烯薄层、将石墨烯薄层插入到NPB和ITO之间、插入到Alq3和LiF之间以及在NPB中掺杂石墨烯薄层的方式,制作了4组器件.研究结果表明:在NPB中掺杂石墨烯薄层的器件,在同等条件下性能最佳;当电压达到15 V时,器件电流效率达到最大值3.40 cd·A-1,与其他组器件最高效率相比增大1.46倍;同时,器件的亮度也达到最大值10 070 cd·m-2,比其他组器件最大亮度增大2.37倍.  相似文献   

10.
利用新型铝配合物Alq2(DBM)制备了非掺杂型的双层有机电致白光器件,其结构为ITO/NPB(44 nm)/Alq2(DBM)(66 nm)/LiF(0.8 nm)/Al(100 nm).该器件6 V电压下启亮,在11 V时实现了白光发射,色坐标为(0.32,0.38).器件的最大发光亮度达到468 cd/m2,对应的电流密度为311 mA/cm2.  相似文献   

11.
文章讨论了利用蓝色磷光小分子铱配合物[iridium(III)bis-(4',6'-difluorophenylpyridinato)tetrakis(1-pyrazolyl)borate(Fir6)]与黄色荧光染料Rubrene复合发光产生白光的设想.通过引入CdS薄层而增加电子注入,利用结构为ITO/2-TNATA/NPB/Rubrene/CBP/CBP:Fir6/CBP/Bphen/CdS/LiF/Al的器件,通过增加激子阻挡层CBP,获得了色度较好的白色有机电致发光器件.当两层激子阻挡层CBP厚度均为3 nm时,电压从启亮电压3.4 V开始至9 V为止,器件的色坐标从(0.36,0.36)变化到(0.32,0.31),使器件的色度获得了很好的改善.  相似文献   

12.
采用真空蒸镀方法,制备了以N-BDAVBi为发光层的高效率非掺杂蓝色有机电致发光器件,器件的结构为ITO/2T-NATA(40 nm)/NPB( 10 nm)/N-BDAVBi( (3+d) nm)/ADN(7 nm)/N-BDAVBi( (3+d) nm)/ADN (7 nm)/Alq3 (30 nm)/LiF(0....  相似文献   

13.
以半导体纳米材料CdSe/ZnS作为发光层, ZnO作为电子传输层, 用Al和氧化铟锡(ITO)分别作为两极材料, 采用旋涂和真空蒸镀膜技术制备半导体发光二极管, 并对其光学性质进行表征. 结果表明: 该器件发射黄光, 峰位为575 nm, 半峰宽30 nm, 最大发光强度2 000 cd/m2; 在较高的电流密度下, 该器件的电致发光效率无
明显衰减; 当半导体纳米材料CdSe/ZnS及ZnO分别作为发光层和电子传输层时, 可制备具有高电流密度且稳定的发光二极管主体材料.  相似文献   

14.
采用蓝色荧光有机染料DSA-Ph作为客体材料,将其掺入主体材料BUBH-3中,制备了高效率色稳定的单发光层掺杂结构的蓝色有机荧光器件.当DSA-Ph掺杂质量比为3 wt.%时,器件的最大电流效率4.17 cd/A,对应色坐标为(0.161,0.286),亮度为5 038 cd/m2.当电压为14 V时,器件的最大亮度为16 160 cd/m2.另外,亮度从907 cd/m2增加到14 680 cd/m2过程中,其色坐标从(0.163,0.287)到(0.159,0.281),变化量ΔCIExy仅为(0.004,0.006).  相似文献   

15.
High-efficiency white organic light-emitting devices with single emitting layer are demonstrated. N,N‘-diphenyI-N,N‘-bis(1,1‘-biphenyl)-4,4‘-diamine (NPB) is used as hole transport layer, while 4,7-diphenyl-l,10-phenan-throline (BPhen) as electron transport layer and 9,10-di-(2-naphthyl)-2-terbutyl-anthracene (TADN) doped with the fluorescent dye 4-(dicyanomethylene)-2-t-buty1-6-(1,1,7,7-tetramethyljulolidyl-9-enyl) (DCJTB) as single emissive layer. The effects of performance by the concentration of DCJTB and the thickness of emissive layer are studied. The device with a structure of indium tin oxide/NPB (50 nm)/TADN: 0.2% DCJTB (15 nm)/BPhen (40 nm)/Mg: Ag shows a maximum brightness of 11400 cd/m^2, a peak current efficiency of 5.6 cd/A and power efficiency of 4.1 Ira/W, while the low turn-on voltage of 3.1 V and the stability of the Commission International De L‘Eclairage coordinate. The spectra through color filter of the device are also studied.  相似文献   

16.
Efficient red organic light-emitting device consisted of a compound fluorescent-phosphor-sensitized emission layer was fabricated. A novel red fluorescent dye, 3-(dicyanomethylene)-5,5-dimethyl-1-(4-dimethylamino-styryl) cyclohexene (DCDDC), and a green phosphorescent dye, fac tris(2-phenylpyridine) iridium [Ir(ppy)3] were codoped into a host material 4,4’-N,N’-dicarbazolebiphenyl (CBP). By adjusting the component ratio of doping system, a series of devices with different concentration proportion of Ir(ppy)3:DCDDC were constructed. The results demonstrated that the device with 0.2 wt% DCDDC had a maximum power efficiency (ηp) of 2.12 lm/W at a current density of 0.1 mA/cm2, which was about 38% higher than that of conventional fluorescent device. When at a current density of 4 mA/cm2 (100 cd/m2) and 52 mA/cm2 (1000 cd/m2), the ηp percentage was about 160% and 143% higher than that of conventional device, respectively. A stable red light emission at a peak of 615 nm with Commissions Internationale de l’Eclairage coordinates near the region of (0.56, 0.42) in a wide bias range was also obtained. The improved performances were attributed to the efficient multiple-stage energy transfer from the host to the guest and the suppression of loss mechanism.  相似文献   

17.
报导了蓝色有机电致发光材料9,9'-联二蒽(9,9'-bianthracene,简称BA)作为发光层,研制了结构为ITO/PVK:TPD/BA/Alq3/Al的蓝色有机发光器件.对该器件的发光及电学性能进行了研究.启亮电压约为12 V,在24 V外加电压下亮度达到最大值2 433 cd/m2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号