首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The strain amplitude-controlled fatigue characteristics of an Al–Si casting alloy and itscomposite reinforced with 17 vol% Al2O3 fibers (Al–Si/Al2O3) are studied at three different temperatures. Both the alloy and the composite showed different degrees of cyclic softening at elevated temperatures. Increasing the temperature, fatigue damage of either the alloy or the composite occurred with varying mode from brittle fracture of silicon particles to their separation from the aluminum matrix. This is explained by the different thermal expansion coefficients of silicon particles and the aluminum matrix. The reinforcement Al2O3 fibers in the composite showed a similar damage behavior with those silicon particles despite temperature variation  相似文献   

2.
The effects of Cr,Al and B addition on the microstructure and high-temperature oxidation behaviors(at 1200,1250 and 1300℃) of Nb-Ti-Si based alloys were investigated.The results showed that the addition of Cr stabilized α-Nb5 Si3,while Al promoted the formation of β-Nb5 Si3 and adding B promoted the formation of γ-Nb5 Si3.Among the three elements,Al and Cr were beneficial to oxidation resistance at 1200℃,and B was favorable to the...  相似文献   

3.
The hot deformation behavior of the as-cast Ti–48Al–2Cr–2Nb alloy was investigated by isothermal compression tests at deformation temperatures ranging from 1000℃ to 1200℃,and strain rates from 0.001 s~(-1)to 0.1 s~(-1).The single peak stress features common to all flow curves indicate that DRX is the dominating softening mechanism.The calculated values of the hot deformation activation energy Q and stress index n are 296.5 kJ mol~(-1)and 3.97,respectively.Based on this,the Arrhenius type constitutive equation was successfully established.The DRX critical condition model and relationship among DRX volume fractions,deformation temperatures and strain rates were obtained to optimize the process.Combined with microstructure analysis,it's concluded that 1200℃/0.01s~(-1)is the optimization parameter.Besides,both DDRX and CDRX were observed in theγphase evolution.The deformation mechanism from the inter-grain dislocation motion to the grain boundary migration and grain rotation was discussed.  相似文献   

4.
The effect of solution treatment on the microstructure and creep properties of forged TiAl-Nb alloys was investigated.The results showed that the microstructure of forged alloy mainly consisted of γ/α2 lamellar colonies and fine equiaxed recrystallized γ/α2 grains.During the solution treatment the microstructure of the alloy transformed into a fully lamellar structure due to the lamellar colonies growth by consuming equiaxed grains.Compared with the forged alloy the creep l...  相似文献   

5.
The hot deformation behavior of a newly developed 51.1Zr–40.2Ti–4.5Al–4.2 V alloy was investigated by compression tests in the deformation temperature range from 800 to 1050 ℃ and strain rate range from 10-3to 100 s-1. At low temperatures and high strain rates, the flow curves exhibited a pronounced stress drop at the very beginning of deformation, followed by a slow decrease in flow stress with increasing strain. The magnitude of the stress drop increased with decreasing deformation temperature and increasing strain rate. At high temperatures and low strain rates, the flow curves exhibited typical characteristics of dynamic recrystallization. A hyperbolic-sine Arrhenius-type equation was used to characterize the dependences of the flow stress on deformation temperature and strain rate. The activation energy for hot deformation decreased slightly with increasing strain and then tended to be a constant value. A microstructural mechanism map was presented to help visualize the microstructure of this alloy under different deformation conditions.  相似文献   

6.
The cyclical tensile deformation behavior of a solution-treated(ST) Ti-33Nb-4Sn alloy with a dual β and α "phases was investigated in this study.Experimental results indicated that the ST Ti-33Nb-4Sn alloy exhibited different deformation behavior during two different loading-unloading cycles,and that the deformation behavior was closely related to the characteristics of stress-induced martensitic(SIM) transformation,mainly including the extent and the reversibility of SIM transformation.During the first cycle,the extensive and incompletely reversible SIM transformation occurred,resulting in notable "double yielding" during loading and residual permanent strain after unloading.In the second cycle,however,a slight and reverse SIM transformation,together with pure elastic deformation,taken place concurrently,giving rise to a recoverable nonlinear deformation behavior.Our results also imply that by tailing the characteristics of SIM transformation,the Ti-based alloys with a mixture of α" and β phases might perform recoverable deformation and possess a promising potential for engineering applications.  相似文献   

7.
Hydrostatic cyclic expansion extrusion(HCEE) process at elevated temperatures is proposed as a method for processing less deformable materials such as magnesium and for producing long ultrafine-grained rods. In the HCEE process at elevated temperatures, high-pressure molten linear low-density polyethylene(LLDPE) was used as a fluid to eliminate frictional forces. To study the capability of the process,AM60 magnesium rods were processed and the properties were investigated. The mechanical properties were found to improve significantly after the HCEE process. The yield and ultimate strengths increased from initial values of 138 and 221 MPa to 212 and 317 MPa, respectively.Moreover, the elongation was enhanced due to the refined grains and the existence of high hydrostatic pressure. Furthermore, the microhardness was increased from HV 55.0 to HV 72.5. The microstructural analysis revealed that ultrafine-grained structure could be produced by the HCEE process. Moreover, the size of the particles decreased, and these particles thoroughly scattered between the grains. Finite element analysis showed that the HCEE was independent of the length of the sample, which makes the process suitable for industrial applications.  相似文献   

8.
In the present investigation, both static and dynamic precipitations of an Al–Mg–Si–Cu aluminum alloy after solid-solution treatment(SST)were comparatively analyzed using differential scanning calorimetry(DSC). Dynamic aging was performed in the SST alloy through equal channel angular pressing(ECAP) at different temperatures of room temperature, 110, 170, 191 and 300 1C. For comparison, static artificial aging was conducted in the SST alloy at 191 1C with two aging times of 4 and 10 h. The DSC analyses reveal that the dynamic precipitation has occurred in the ECAPed samples, while the activation energies associated with the strengthening precipitates in the dynamic samples are considerably higher than the energies in the SST and static aged samples. The higher activation energies are probably attributed to the smaller grains and higher dislocation density developed after ECAP. The results in the present investigation allow the prediction of the type of the dynamic precipitates to influence the strength of the ultrafine grained alloy during ECAP at various temperatures.  相似文献   

9.
In the present work, an Al–0.66Mg–0.85Si–0.2Cu alloy with Zn addition was investigated by electron back scattering diffraction(EBSD), high resolution electron microscopy(HREM), tensile and Erichsen tests. The mechanical properties of the alloy after pre-aging met the standards of sheet forming. After paint baking, the yield strength of the alloy was improved apparently. GP(Ⅱ) zones and η’phases were formed during aging process due to Zn addition. With the precipitation of GP zones, β″ phases, GP(Ⅱ) zones and η’phases, the alloys displayed excellent mechanical properties.  相似文献   

10.
The hot deformation behavior,hot workability and dynamic recrystallization evolution of Zr-1.0(wt%) Be alloy in single a phase were investigated by conducting hot compression tests.The strain rates ranging from 10~(-3) s~(-1) to 10° s~(-1) and testing temperatures varying from 650 ℃to 850℃ were used.Flow stress was found to increase with increasing strain rate and decrease with the increment of the deformation temperature.A constitutive equation of flow behavior was established to describe the dependence of flow stress on strain rate and deformation temperature.The activation energy for deformation of Zr-1.0Be alloy was determined to be Q= 301 kJ/mol.The processing map of Zr-1.0Be alloy was constructed at strain rates ranging from 10~(-3) s~(-1) to 10° s~(-1) and deformation temperatures varying from 650 ℃ to 850 ℃ at the true strain of 0.7.A processing map was used to identify the best domains of thermal processing,including a domain at a temperature of 650 ℃ and strain rate of 10~(-3) s~(-1) as well as another domain at deformation temperatures ranging from 800 ℃ to 850 ℃ and strain rates varying from 10~(-3) s~-~(-1) to 10~(-1) s~(-1).Microscopic analysis of Zr-l.OBe alloy showed that the flow instability and kink were very obvious at low temperatures and high strain rates.At high temperatures and low strain rates,the dynamic recrystallization became the main softening mechanism during hot working.  相似文献   

11.
The influence of different rolling processes on precipitation behaviour, crystallography texture, grain morphology, and their consequent effects on tensile properties for Al–Cu–Li alloy AA2195 was investigated in the present work. The H-T8 samples (hot rolled ?+ ?T8) presented better tensile strength and ductility (with serious strength anisotropy) than the HC-T8 samples (hot rolled ?+ ?cold rolled ?+ ?T8), due to their different microstructures and textures. The higher dislocation density was found in the H-T8 samples, which promoted the nucleation of main strengthening phase T1 in the matrix and suppressed the grain boundary precipitation, resulted in better strength and ductility. The increase of the dynamic recovery (DRV) during hot rolling enhanced the generation of Brass texture, and brought serious strength anisotropy. The cold rolling was performed after the hot-rolling process for the HC-T8 samples which increased deformation energy and resulted in full recrystallization of the deformed microstructure during the following solution treatment. The formation of recrystallized microstructure reduced the dislocation density and the heterogeneous precipitate nucleation positions which limited the strengthening phase precipitation in matrix and accelerated the precipitation along grain boundaries, resulted in fewer T1 precipitates, coarse grain-boundary precipitates (GBPs), and wider precipitate-free zones (PFZs). The localized strain may be concentrated on the grain boundary to induce the dislocation pile-up, breaking of the GBPs, and intergranular fracture during stretching.  相似文献   

12.
The corrosion behavior of corrosion resistant steel (CRS) in a simulated wet–dry acid humid environment was investigated and compared with carbon steel (CS) using corrosion loss, polarization curves, X-ray diffraction (XRD), scanning electron microscopy (SEM), electron probe micro-analysis (EPMA), N2 adsorption, and X-ray photoelectron spectroscopy (XPS). The results show that the corrosion kinetics of both steels were closely related to the composition and compactness of the rust, and the electrochemical properties of rusted steel. Small amounts of Cu, Cr, and Ni in CRS increased the amount of amorphous phases and decreased the content of γ-FeOOH in the rust, resulting in higher compactness and electrochemical stability of the CRS rust. The elements Cu, Cr, and Ni were uniformly distributed in the CRS rust and formed CuFeO2, Cu2O, CrOOH, NiFe2O4, and Ni2O3, which enhanced the corrosion resistance of CRS in the wet–dry acid humid environment.  相似文献   

13.
In recent years, the addition of Ni has been widely acknowledged to be capable of enhancing the mechanical properties of Al–Si alloys. However, the effect of Ni on the wear behaviors of Al–Si alloys and Al matrix composites, particularly at elevated temperatures, remains an understudied area. In this study, Al–Si–Cu–Mg–Ni/20wt% SiC particles(SiCp) composites with varying Ni contents were prepared by using a semisolid stir casting method. The effect of Ni content on the dry sliding wear behavior ...  相似文献   

14.
Mg–8Li–3Al+xCe alloys (x = 0.5wt%, 1.0wt%, and 1.5wt%) were prepared through a casting route in an electric resistance furnace under a controlled atmosphere. The cast alloys were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The corrosion behavior of the as-cast Mg–8Li–3Al+xCe alloys were studied under salt spray tests in 3.5wt% NaCl solution at 35°C, in accordance with standard ASTM B–117, in conjunction with potentiodynamic polarization (PDP) tests. The results show that the addition of Ce to Mg–8Li–3Al (LA83) alloy results in the formation of Al2Ce intermetallic phase, refines both the α-Mg phase and the Mg17Al12 intermetallic phase, and then increases the microhardness of the alloys. The results of PDP and salt spray tests reveal that an increase in Ce content to 1.5wt% decreases the corrosion rate. The best corrosion resistance is observed for the LA83 alloy sample with 1.0wt% Ce.  相似文献   

15.
Mesocarbon microbeads (MCMB) with narrow size distribution, excellent sphericity and no obvious conglutination have been prepared with a coal tar pitch containing quinoline insolubles (QI) as the raw material. Optical microscopy and scanning electron microscopy (SEM) are used to examine the structure of the MCMB. It has been found that SEM technique shows the structural information of MCMB clearly in the form of micrographs even when the structure of MCMB is complex, while the optical technique is useful for analysis of the regular structure of the mesophase spheres but cannot be effectively used to analyze either the complex structure of the green MCMB or the structures of the further heat-treated ones at different temperatures. According to the characteristics of the carbon layers, the structures of the as-prepared MCMB in the present experiment could be classified as (I) Parallel Layer type structure and (2) Bent Layer type structure with the carbon layers gathering at one or two points in the MCMB. In the experiments, SEM is also utilized to investigate the structures of MCMB that are heat-treated at different temperatures. It has been found that the MCMB without any further heat-treatment show no layered-carbons, while the ones heat-treated at temperaturehigher than 1000℃ exhibit obvious layered carbons across their sections. When increasing the heat-treatment temperature, the carbon layers become thinner and flatter.  相似文献   

16.
The hot ductility of a Fe–0.3C–9Mn–2Al medium Mn steel was investigated using a Gleeble 3800 thermo-mechanical simulator. Hot tensile tests were conducted at different temperatures(600–1300°C) under a constant strain rate of 4 × 10~(-3) s~(-1). The fracture behavior and mechanism of hot ductility evolution were discussed. Results showed that the hot ductility decreased as the temperature was decreased from1000°C. The reduction of area(RA) decreased rapidly in the specimens tested below 700°C, whereas that in the specimen tested at 650°C was lower than 65%. Mixed brittle–ductile fracture feature is reflected by the coexistence of cleavage step, intergranular facet, and dimple at the surface. The fracture belonged to ductile failure in the specimens tested between 720–1000°C. Large and deep dimples could delay crack propagation. The change in average width of the dimples was in positive proportion with the change in RA. The wide austenite–ferrite intercritical temperature range was crucial for the hot ductility of medium Mn steel. The formation of ferrite film on austenite grain boundaries led to strain concentration. Yield point elongation occurred at the austenite–ferrite intercritical temperature range during the hot tensile test.  相似文献   

17.
The effect of particle size distribution on the microstructure, texture, and mechanical properties of Al–Mg–Si–Cu alloy was investigated on the basis of the mechanical properties, microstructure, and texture of the alloy. The results show that the particle size distribution influences the microstructure and the final mechanical properties but only slightly influences the recrystallization texture. After the pre-aging treatment and natural aging treatment (T4P treatment), in contrast to the sheet with a uniform particle size distribution, the sheet with a bimodal particle size distribution of large constituent particles and small dispersoids exhibits higher strength and a somewhat lower plastic strain ratio (r) and strain hardening exponent (n). After solution treatment, the sheet with a bimodal particle size distribution of large constituent particles and small dispersoids possesses a finer and slightly elongated grain structure compared with the sheet with a uniform particle size distribution. Additionally, they possess almost identical weak recrystallization textures, and their textures are dominated by CubeND {001}<310> and P {011}<122> orientations.  相似文献   

18.
19.
The corrosion behavior of Mg–(0.25, 2.5, 5, 8 and 15)Y alloys in 3.5wt.% NaCl aqueous solution was investigated. It was found that the degree of corrosion deterioration increased with increasing immersion time up to 2 h. Corrosion modes for the alloys with low and high content of Y element were general corrosion and pitting corrosion, respective ly, and the threshold content for the corrosion mode change was 2.5% for the tested alloys. The experimental results showed that the addition of Y refined the grain of the alloy, and the distribution, i.e., continuous or not, of the Mg24Y5 phases had great effect on the corrosion rate and corrosion mode.  相似文献   

20.
The effect of particle size distribution on the microstructure,texture,and mechanical properties of Al–Mg–Si–Cu alloy was investigated on the basis of the mechanical properties,microstructure,and texture of the alloy.The results show that the particle size distribution influences the microstructure and the final mechanical properties but only slightly influences the recrystallization texture.After the pre-aging treatment and natural aging treatment(T4 P treatment),in contrast to the sheet with a uniform particle size distribution,the sheet with a bimodal particle size distribution of large constituent particles and small dispersoids exhibits higher strength and a somewhat lower plastic strain ratio(r) and strain hardening exponent(n).After solution treatment,the sheet with a bimodal particle size distribution of large constituent particles and small dispersoids possesses a finer and slightly elongated grain structure compared with the sheet with a uniform particle size distribution.Additionally,they possess almost identical weak recrystallization textures,and their textures are dominated by CubeND {001}310 and P {011}122 orientations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号