首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phase change materials (PCMs) have great potential in energy-saving and environmental field due to their high latent heat. The deficiencies that restrict the application of PCMs are their poor thermal conductivity and liquid leakage after phase change. To shoot these problems, a thermally-induced flexible WOOD/PCM composite with enhanced energy storage density and anisotropic thermal conductivity has been proposed. This composite consisted of polyethylene glycol 6000 (PEG6000), delignified balsa wood and boron nitride (BN). The results revealed that the melting enthalpy and freezing enthalpy of WOOD/PEG6000 composite were 209.3 ?J/g and 214.9 ?J/g, which had an augment of about 8% comparing with pure PEG6000. After adding 33 ?wt% BN to the composite, its thermal conductivity in the out-of-plane direction reached 0.96 ?W/(m·K), while the radial thermal conductivity was 0.36 ?W/(m·K). The controllable anisotropic thermal conductivity implies a good application in the environment where forced unidirectional heat dissipation is needed. Furthermore, the composite also shows excellent thermal induced flexibility, such as bending and compression, which is significant in reducing thermal contact resistance with substrates in application. This work indicates that the prepared PCM composite has a great potential application in thermal energy storage and thermal management.  相似文献   

2.
通过溶胶-凝胶法把偏钛酸型锂离子吸附剂负载在堇青石基泡沫陶瓷上,采用离子交换柱研究了所制备的样品的动态吸附和洗脱性能。研究了液体流速、Li+浓度、单柱/多柱对吸附容量和Li+富集倍数的影响。结果表明,泡沫陶瓷基锂离子吸附剂达到穿漏点所需的时间较长,吸附剂具有较大的操作吸附容量。在一定的范围内,洗脱液的流速不会显著影响Li+的富集倍数。吸附剂对高浓度的Li+不具有富集的能力,而对低浓度的Li+具有富集的能力。通过在洗脱流出液中加盐酸将其pH值调节到原始的洗脱液pH值,再将其作为洗脱液,吸附剂对Li+的富集倍数最少可以达到26.55倍。  相似文献   

3.
使用膨胀石墨、碳纤维与石蜡研制出复合型相变蓄能材料,利用膨胀石墨、碳纤维作为高导热材料与结构支撑材料;通过物性参数遴选、结构参数优化设计方法,搭建高导热性能的复合相变材料蓄热电暖器实验台;研究不同蓄放热运行工况下该装置的蓄放热性能。研究结果显示,与日间主动式放热工况相比,日间被动式放热工况放热速率衰减较慢,被动式放热工况的最低放热速率比主动式放热工况最低放热速率高24. 7%。该装置可以利用主/被动放热方式调节蓄放热速率,满足不同房间的供热需求。在夜间蓄热、日间放热的运行工况下,该相变蓄热电暖器所在房间温度波动较小,具有较好热舒适性。该蓄热电暖器蓄热效率达67%,能充分利用夜间低谷电蓄热,实现降低运行费用的目的。  相似文献   

4.
Mica was used as a supporting matrix for composite phase change materials(PCMs) in this work because of its distinctive morphology and structure.Composite PCMs were prepared using the vacuum impregnation method,in which mica served as the supporting material and polyethylene glycol(PEG) served as the PCM.Fourier transform infrared and X-ray diffraction analysis confirmed that the addition of PEG had no effect on the crystal structure of mica.Moreover,no chemical reaction occurred between PEG and...  相似文献   

5.
相变储热在建筑节能中的应用   总被引:7,自引:0,他引:7  
相变储热技术是利用低品位能源 ,实现建筑节能的重要途径。综述了可用于建筑节能的相变储热材料和相变储热技术 ,并提出了这一技术领域内近期需要研究和解决的问题  相似文献   

6.
The objective of this work is to obtain a multifunctional porous ceramic material at low cost with improved properties and that can be used in many applications like: thermal and acoustic insulation, refractory support and hot gas filtration elements. To that end, a novel facile strategy to fabricate porous ceramics by foaming and pore-forming agent methods using magnesia-aluminum spinel hollow spheres (MASHSs) was reported for the first time, in which calcium aluminate cement (CAC) served as high-temperature binder. The influence of temperature ranging from 1500 ?°C to 1700 ?°C on the thermal conductivity, porosity and mechanical strength were investigated. The results show that, the obtained MASHSs ceramic exhibits high porosity (67.2–71.9%) and thermal conductivity (0.18–0.38 ?W/mK), and compressive strength (6.1–17.1 ?MPa), which is mainly due to the change in crack directions and microstructure optimization with the prolong of firing temperature. The crack directions changed from the surface of MASHSs to the interior MASHSs, which consumes more crack energy, and thus leading to the excellent mechanical performance. What is more, the introduction of MASHSs makes it difficult to lose heat at elevated temperature, and thereby improving the thermal conductivity of materials.  相似文献   

7.
于文艳  殷凯 《科学技术与工程》2023,23(31):13492-13498
相变材料(PCM)与建筑围护结构相结合,可以有效利用间歇性可再生能源不均匀分布的特点,在温度变化较小的情况下吸收大量的热量,减小室温的波动。本文将微胶囊相变材料加入到腻子粉中制备复合相变涂料,利用扫描电子显微镜(SEM)、差示扫描量热仪(DSC)和热重分析仪(TG)对其微观形貌、相变特性和热稳定性进行表征。将复合相变涂料应用于水泥板内表面,研究微胶囊相变材料(MPCM)含量对复合相变涂层蓄热调温性能的影响。结果表明:复合相变涂层的温度变化速率比普通涂层慢,随着微胶囊相变材料含量的增加,复合相变涂层与普通涂层的表面温差呈递增趋势。复合相变涂层能明显降低峰值温度和温度的波动范围,起到调节室温的作用。微胶囊相变材料含量从0%增加到30%,复合相变涂层与普通涂层的温差逐渐增大,最大为3.2 ℃。与普通涂层相比,随着微胶囊相变材料含量的增加,复合相变涂层室内温度保持24~28 ℃的时间逐渐增加,微胶囊相变材料含量为30%的复合相变涂层室内温度保持24~28 ℃的时间比普通涂层延长23.5 min。  相似文献   

8.
PVF悬浮填料的制备及其污水处理效果的研究   总被引:1,自引:0,他引:1  
制备了一种新型的高分子多孔载体——活性泡沫填料,它是聚乙烯醇和甲醛的缩聚物(PVF)。其比表面积大、密度接近于水,具有良好的亲生物特性,可作为悬浮填料在移动床工艺中为微生物提供附着生长的载体。研究表明,在复合式生物反应器中加入不同活性炭质量分数的两种活性PVF泡沫填料处理模拟生活污水,其COD的去除率在95%以上,氨氮的去除率为80%左右。在相同的工艺条件下活性炭质量分数为8%的PVF填料COD的去除效果和反硝化效果更为理想。当两填料体系中COD与NH4+-N的质量浓度比为20时,两系统的同时硝化反硝化(SND)效果均为最理想。  相似文献   

9.
显微组织对Fe3Al基合金的室温和高温力学性能以及抗蠕变性能有较大影响。研究表明,减少横向晶并不是提高Fe3Al合金室温塑性的最有效途径。通过加大形变量,细化显微组织可以明显改善合金的室温力学性能,但会使其高温性能下降。  相似文献   

10.
利用DTA-TG热分析技术研究了无机塑晶材料Na2WO4的热性能。实验数据表明,Na2WO4的固-固相变焓总和为164.1J/g,是一种有前途的固-固相变贮能材料。固-固相变的机理是随着温度的升高,Na2WO4晶体的晶格发生畸变,晶型由低对称的晶系向高对称的晶系转变,同时引入振动和转动无序,从而吸收热量。  相似文献   

11.
以正硅酸乙酯为原料,采用溶胶-凝胶法制备多孔SiO2凝胶,将LaNi4.25Al0.75合金粉与凝胶混合在500℃进行真空烧结。将真空烧结所得样品在吸氢系统中进行吸、放氢性能测试,用恒流电池测试仪研究其电化学性能。研究结果表明:所得样品的抗氧化性能明显比纯LaNi4.25Al0.75合金粉的抗氧化性能强,在常温下吸氢后暴露在空气中没有出现自燃现象;所得样品在吸、放氢测试中表现出良好的稳定性能,当以1C放电到0.9 V时,经30次充、放电循环后,纯LaNi4.25Al0.75合金的初始容量为270 mA.h/g,容量衰减27.8%;包覆多孔SiO2凝胶后其初始放电容量为260 mA.h/g,容量仅衰减7.5%。  相似文献   

12.
The microstructure of the Ti–V–Al shape memory alloy with refined grain and in-situ TiB phase was modified by doping minor Boron (B), which contributes to the superior mechanical performances and strain recovery characteristics. Compared with other quaternary Ti–V–Al-X alloys, the Ti–V–Al–B alloy showed the largest ultimate tensile stress due to the solution strengthening, grain refinement and precipitation strengthening of in-situ TiB phase. Moreover, the Ti–V–Al alloy added 0.1 ?at.%B possessed the maximum yield stress of 701 ?MPa and the largest tensile fracture strain of 27.6% at the temperature of 150 ?°C. Meanwhile, the excellent strain recovery characteristics with fully recoverable strain of 4% could be obtained due to B addition. Besides, B addition suppressed the precipitation of ω phase during thermal cycling and further improved the thermal cycling stability of the Ti–V–Al alloy.  相似文献   

13.
The V72Ti18Cr10 alloy was prepared by a co-precipitation-reduction method in order to consume less energy during whole-life alloy manufacturing, and the phase evolution process in hydrogenation/dehydrogenation process was investigated. The structure refinement analysis of the alloy contented with 1 ?wt% hydrogen after hydrogenation shows that BCC phase, BCC-hydride phase and FCC phase coexisted, but little BCT phase was found. It indicates that the phase evolution process during hydrogenation was BCC→ BCC-hydride→ FCC, nevertheless the formation of BCT phase was restrained. The limited particle sizes of the alloy in the range of 0.1–5 ?μm and fewer defects than the normal alloy ingot contributed to the suppression of BCT formation. The annealed alloy, which had similar particle sizes with the unannealed alloy, has less unevenness of the compositions than the unannealed alloy, and the annealed alloy showed flatter plateau in the hydrogenation PCT (pressure-composition-temperature) curves. However, the BCT phase in the annealed alloy appeared in its dehydrogenation process owing to the produced defects during the following dehydrogenation and the hydrogenation process. The alloy with the limited particle sizes even in the range from 0.1 ?μm to 5 ?μm could not prevent the generation of BCT phase in the dehydrogenation process.  相似文献   

14.
通过铝热反应熔化方法制备Ni质量分数分别为5%、10%、15%的块体纳米晶Fe3Al材料,研究材料在室温压缩和弯曲下的力学性能及硬度.结果表明,所制备材料的平均晶粒尺寸均约为21 nm;随着合金元素Ni质量分数的增加,材料的硬度和屈服强度δ0.2逐渐增大;材料在弯曲实验中均表现为脆性断裂,弯曲强度随Ni含量的增加先增大后减小,w(Ni)=10%的材料弯曲强度最大,为328.7 MPa.  相似文献   

15.
本文通过原位聚合法制备了以脲醛树脂为壁材的微胶囊相变材料。采用SEM,DSC,光学显微镜等测试仪器考察了乳化剂种类、用量及乳化转速对微胶囊性能的影响;分析了助剂NaCl和分散剂NNO的用量对微胶囊微观形态、相变潜热和平均粒径的影响。实验结果表明,在乳化转速为3000rpm下,使用用量占芯材质量5%的复合乳化剂合成的微胶囊热性能良好,球体表面光滑,粒径均一。加入NaCl溶液后,微胶囊的相变潜热增加;当NaCl浓度为10%时,相变潜热达到最大,包覆率达到92.04%。同时加入占芯材质量2%的NNO,微胶囊的分散性好。  相似文献   

16.
采用低温球磨技术制备了Mg-4%Ni-1%NiO储氢材料,主要研究低温球磨时间对材料形貌结构以及储氢性能的影响.采用扫描电子显微镜(SEM)和X射线衍射(XRD)分析材料的形貌和相组成,采用压力-组成-温度(P-C-T)设备研究材料的储氢性能.结果表明:分别经过2、4和7 h球磨后,材料的相组成没有发生明显改变,只有极少量的Mg2Ni合金相生成.随着球磨时间的延长,材料的平均粒度逐渐下降,作为催化剂的Ni、NiO相逐渐揉进基体内部.伴随着上述变化,材料的活化性能、吸氢性能逐渐提高,球磨到7 h后材料仅需活化1次即可达到最大吸放氢速率,初始吸氢温度降为60℃,在4.0 MPa初始氢压和200℃下吸氢量为6.4%(质量分数),60s即可完成饱和吸氢量的80%,10min内完成饱和吸氢量的90%;材料的放氢性能则在球磨4 h后已经基本保持不变,0.1MPa下初始放氢温度为310℃,在350℃、0.1MPa下材料可在500s内释放饱和储氢量的80%.  相似文献   

17.
Porous TiAl3 intermetallics were synthesized from Ti-75 at.% Al elemental powder mixtures using an energy-saving and rapid reactive method of thermal explosion (TE). The results demonstrated that the actual temperature of the compact climbed rapidly from 673 °C to 1036 °C within 24 s, indicating that an obvious TE reaction occurred during sintering process. The video graphs suggested that the TE in Ti–Al system behaved instant occurrence and overall heating whether from axial or radial direction. The silver wires and NaCl particles that pressed on the surface of the sample disappeared due to the heavy heat released during TE reaction. Only pure TiAl3 phases were synthesized in TE products and the open porosity of 55.4% was easy to obtain. After high-temperature treatment at 1000 °C, large amounts of sintering-neck formed and then improved the compressive strength of porous TiAl3 materials. Moreover, the mass gain curve of porous TiAl3 intermetallics oxidized at 650 °C for 120 h exhibited the parabolic oxidation rate law. XPS analysis confirmed that the strong O 1s peak was 531.4 eV which was the typical binding energy of Al2O3. Therefore, the excellent oxidation resistance of porous TiAl3 foams would be considered as good candidate materials for prolonging the service life at high temperatures.  相似文献   

18.
以无压烧结方式制备了Al2O3/20%Ni(Ti)(体积分数)复合材料.通过分析Ti元素的分布状态,研究了Ti添加剂对Al2O3/20%Ni复合材料相界面润湿及力学性能的影响规律.结果表明,Ti元素集中分布在Al2O3/Ni相界面附近,并通过促进相界面润湿,强化相界面结合而显著改善复合材料的力学性能.实验成分范围内,随Ti含量增加,三点弯曲强度提高,而断裂韧性在3%Ti(质量百分数)时具有最大值,为6.2MPam12.断口形貌分析表明,复合材料的增韧机理为桥接机理  相似文献   

19.
To improve the hydrogen storage properties of Mg-based alloys, a composite material of MgH2 + 10wt%LaH3 + 10wt%NbH was prepared by a mechanical milling method. The composite exhibited favorable hydrogen desorption properties, releasing 0.67wt% H2 within 20 min at 548 K, which was ascribed to the co-catalytic effect of LaH3 and NbH upon dehydriding of MgH2. By contrast, pure MgH2, an MgH2 + 20wt%LaH3 composite, and an MgH2 + 20wt%NbH composite only released 0.1wt%, 0.28wt%, and 0.57wt% H2, respectively, un-der the same conditions. Analyses by X-ray diffraction and scanning electron microscopy showed that the composite particle size was small. Energy-dispersive X-ray spectroscopic mapping demonstrated that La and Nb were distributed homogeneously in the matrix. Differential thermal analysis revealed that the dehydriding peak temperature of the MgH2 + 10wt%LaH3 + 10wt%NbH composite was 595.03 K, which was 94.26 K lower than that of pure MgH2. The introduction of LaH3 and NbH was beneficial to the hydrogen storage performance of MgH2.  相似文献   

20.
An Al-based composite reinforced with core-shell-structured Ti/Al3Ti was fabricated through a powder metallurgy route followed by hot extrusion and was found to exhibit promising mechanical properties. The ultimate tensile strength and elongation of the composite sintered at 620°C for 5 h and extruded at a mass ratio of 12.75:1 reached 304 MPa and 14%, respectively, and its compressive deformation reached 60%. The promising mechanical properties are due to the core-shell-structured reinforcement, which is mainly composed of Al3Ti and Ti and is bonded strongly with the Al matrix, and to the reduced crack sensitivity of Al3Ti. The refined grains after hot extrusion also contribute to the mechanical properties of this composite. The mechanical properties might be further improved through regulating the rela-tive thickness of Al-Ti intermetallics and Ti metal layers by adjusting the sintering time and the subsequent extrusion process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号