首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MECHANICAL ENERGY INPUT FROM THE ATMOSPHERE IS ONE OF THE MOST IMPORTANT SOURCES OF ENERGY DRIVING THE OCEANIC GENERAL CIRCULATION[1,2]. THIS ENERGY IS TRANS- FERRED TO THE OCEANS, MOSTLY THROUGH SEA SURFACE WIND STRESS AND ATMOSPHERIC PRESSURE PERTURBATI…  相似文献   

2.
Huybers P 《Nature》2011,480(7376):229-232
Milankovitch proposed that Earth resides in an interglacial state when its spin axis both tilts to a high obliquity and precesses to align the Northern Hemisphere summer with Earth's nearest approach to the Sun. This general concept has been elaborated into hypotheses that precession, obliquity or combinations of both could pace deglaciations during the late Pleistocene. Earlier tests have shown that obliquity paces the late Pleistocene glacial cycles but have been inconclusive with regard to precession, whose shorter period of about 20,000 years makes phasing more sensitive to timing errors. No quantitative test has provided firm evidence for a dual effect. Here I show that both obliquity and precession pace late Pleistocene glacial cycles. Deficiencies in time control that have long stymied efforts to establish orbital effects on deglaciation are overcome using a new statistical test that focuses on maxima in orbital forcing. The results are fully consistent with Milankovitch's proposal but also admit the possibility that long Southern Hemisphere summers contribute to deglaciation.  相似文献   

3.
Webb SC 《Nature》2007,445(7129):754-756
Observations show that the seismic normal modes of the Earth at frequencies near 10 mHz are excited at a nearly constant level in the absence of large earthquakes. This background level of excitation has been called the 'hum' of the Earth, and is equivalent to the maximum excitation from a magnitude 5.75 earthquake. Its origin is debated, with most studies attributing the forcing to atmospheric turbulence, analogous to the forcing of solar oscillations by solar turbulence. Some reports also predicted that turbulence might excite the planetary modes of Mars to detectable levels. Recent observations on Earth, however, suggest that the predominant excitation source lies under the oceans. Here I show that turbulence is a very weak source, and instead it is interacting ocean waves over the shallow continental shelves that drive the hum of the Earth. Ocean waves couple into seismic waves through the quadratic nonlinearity of the surface boundary condition, which couples pairs of slowly propagating ocean waves of similar frequency to a high phase velocity component at approximately double the frequency. This is the process by which ocean waves generate the well known 'microseism peak' that dominates the seismic spectrum near 140 mHz (refs 11, 12), but at hum frequencies, the mechanism differs significantly in frequency and depth dependence. A calculation of the coupling between ocean waves and seismic modes reproduces the seismic spectrum observed. Measurements of the temporal correlation between ocean wave data and seismic data have confirmed that ocean waves, rather than atmospheric turbulence, are driving the modes of the Earth.  相似文献   

4.
Atmospheric science: early peak in Antarctic oscillation index   总被引:1,自引:0,他引:1  
Jones JM  Widmann M 《Nature》2004,432(7015):290-291
The principal extratropical atmospheric circulation mode in the Southern Hemisphere, the Antarctic oscillation (or Southern Hemisphere annular mode), represents fluctuations in the strength of the circumpolar vortex and has shown a trend towards a positive index in austral summer in recent decades, which has been linked to stratospheric ozone depletion and to increased atmospheric greenhouse-gas concentrations. Here we reconstruct the austral summer (December-January) Antarctic oscillation index from sea-level pressure measurements over the twentieth century and find that large positive values, and positive trends of a similar magnitude to those of past decades, also occurred around 1960, and that strong negative trends occurred afterwards. This positive Antarctic oscillation index and large positive trend during a period before ozone-depleting chemicals were released into the atmosphere and before marked anthropogenic warming, together with the later negative trend, indicate that natural forcing factors or internal mechanisms in the climate system must also strongly influence the state of the Antarctic oscillation.  相似文献   

5.
Genda H  Abe Y 《Nature》2005,433(7028):842-844
The atmospheric compositions of Venus and Earth differ significantly, with the venusian atmosphere containing about 50 times as much 36Ar as the atmosphere on Earth. The different effects of the solar wind on planet-forming materials for Earth and Venus have been proposed to account for some of this difference in atmospheric composition, but the cause of the compositional difference has not yet been fully resolved. Here we propose that the absence or presence of an ocean at the surface of a protoplanet during the giant impact phase could have determined its subsequent atmospheric amount and composition. Using numerical simulations, we demonstrate that the presence of an ocean significantly enhances the loss of atmosphere during a giant impact owing to two effects: evaporation of the ocean, and lower shock impedance of the ocean compared to the ground. Protoplanets near Earth's orbit are expected to have had oceans, whereas those near Venus' orbit are not, and we therefore suggest that remnants of the noble-gas rich proto-atmosphere survived on Venus, but not on Earth. Our proposed mechanism explains differences in the atmospheric contents of argon, krypton and xenon on Venus and Earth, but most of the neon must have escaped from both planets' atmospheres later to yield the observed ratio of neon to argon.  相似文献   

6.
Fan (2007) recently documented the zonal asymmetry of the Antarctic oscillation (AAO) in the austral winter. In this research, the zonal asymmetry of the northern annular mode, or the Arctic oscillation (AO), in the interannual variability is studied for the boreal winter. It is shown that there is zonal asymmetry of the AO as well, similar to the case of the Antarctic oscillation (AAO). However, the zonal asymmetry of the AO is considerably weaker than that of the AAO. This is far beyond the speculation, since the zonal asymmetry of the geography is larger in the Northern Hemisphere than the Southern Hemisphere. The Western and Eastern Hemispheres portions of the AO are correlated at 0.54 for 1959-1998, comparing with 0.23 for the case of the AAO. The authors also discussed the physical reason for this inter-hemispheric difference, and partly attributed it to the El Ni~o and Southern Oscillation (ENSO) cycle which may be represented by the SO index. It is indicated that the SO associated sea-level pressure (SLP) patterns are more zonal symmetric in the high latitudes of the Northern Hemisphere than the Southern Hemisphere.  相似文献   

7.
Oceanic Cd/P ratio and nutrient utilization in the glacial Southern Ocean   总被引:1,自引:0,他引:1  
Elderfield H  Rickaby RE 《Nature》2000,405(6784):305-310
During glacial periods, low atmospheric carbon dioxide concentration has been associated with increased oceanic carbon uptake, particularly in the southern oceans. The mechanism involved remains unclear. Because ocean productivity is strongly influenced by nutrient levels, palaeo-oceanographic proxies have been applied to investigate nutrient utilization in surface water across glacial transitions. Here we show that present-day cadmium and phosphorus concentrations in the global oceans can be explained by a chemical fractionation during particle formation, whereby uptake of cadmium occurs in preference to uptake of phosphorus. This allows the reconstruction of past surface water phosphate concentrations from the cadmium/calcium ratio of planktonic foraminifera. Results from the Last Glacial Maximum show similar phosphate utilization in the subantarctic to that of today, but much smaller utilization in the polar Southern Ocean, in a model that is consistent with the expansion of glacial sea ice and which can reconcile all proxy records of polar nutrient utilization. By restricting communication between the ocean and atmosphere, sea ice expansion also provides a mechanism for reduced CO2 release by the Southern Ocean and lower glacial atmospheric CO2.  相似文献   

8.
Moreno PI  Jacobson GL  Lowell TV  Denton GH 《Nature》2001,409(6822):804-808
Understanding the relative timings of climate events in the Northern and Southern hemispheres is a prerequisite for determining the causes of abrupt climate changes. But climate records from the Patagonian Andes and New Zealand for the period of transition from glacial to interglacial conditions--about 14.6-10 kyr before present, as determined by radiocarbon dating--show varying degrees of correlation with similar records from the Northern Hemisphere. It is necessary to resolve these apparent discrepancies in order to be able to assess the relative roles of Northern Hemisphere ice sheets and oceanic, atmospheric and astronomical influences in initiating climate change in the late-glacial period. Here we report pollen records from three sites in the Lake District of southern Chile (41 degrees S) from which we infer conditions similar to modern climate between about 13 and 12.2 14C kyr before present (BP), followed by cooling events at about 12.2 and 11.4 14C kyr BP, and then by a warming at about 9.8 14C kyr BP. These events were nearly synchronous with important palaeoclimate changes recorded in the North Atlantic region, supporting the idea that interhemispheric linkage through the atmosphere was the primary control on climate during the last deglaciation. In other regions of the Southern Hemisphere, where climate events are not in phase with those in the Northern Hemisphere, local oceanic influences may have counteracted the effects that propagated through the atmosphere.  相似文献   

9.
Barnett TP  Adam JC  Lettenmaier DP 《Nature》2005,438(7066):303-309
All currently available climate models predict a near-surface warming trend under the influence of rising levels of greenhouse gases in the atmosphere. In addition to the direct effects on climate--for example, on the frequency of heatwaves--this increase in surface temperatures has important consequences for the hydrological cycle, particularly in regions where water supply is currently dominated by melting snow or ice. In a warmer world, less winter precipitation falls as snow and the melting of winter snow occurs earlier in spring. Even without any changes in precipitation intensity, both of these effects lead to a shift in peak river runoff to winter and early spring, away from summer and autumn when demand is highest. Where storage capacities are not sufficient, much of the winter runoff will immediately be lost to the oceans. With more than one-sixth of the Earth's population relying on glaciers and seasonal snow packs for their water supply, the consequences of these hydrological changes for future water availability--predicted with high confidence and already diagnosed in some regions--are likely to be severe.  相似文献   

10.
In agreement with the Milankovitch orbital forcing hypothesis it is often assumed that glacial-interglacial climate transitions occurred synchronously in the Northern and Southern hemispheres of the Earth. It is difficult to test this assumption, because of the paucity of long, continuous climate records from the Southern Hemisphere that have not been dated by tuning them to the presumed Northern Hemisphere signals. Here we present an independently dated terrestrial pollen record from a peat bog on South Island, New Zealand, to investigate global and local factors in Southern Hemisphere climate changes during the last two glacial-interglacial cycles. Our record largely corroborates the Milankovitch model of orbital forcing but also exhibits some differences: in particular, an earlier onset and longer duration of the Last Glacial Maximum. Our results suggest that Southern Hemisphere insolation may have been responsible for these differences in timing. Our findings question the validity of applying orbital tuning to Southern Hemisphere records and suggest an alternative mechanism to the bipolar seesaw for generating interhemispheric asynchrony in climate change.  相似文献   

11.
The last interglacial period (about 125,000 years ago) is thought to have been at least as warm as the present climate. Owing to changes in the Earth's orbit around the Sun, it is thought that insolation in the Northern Hemisphere varied more strongly than today on seasonal timescales, which would have led to corresponding changes in the seasonal temperature cycle. Here we present seasonally resolved proxy records using corals from the northernmost Red Sea, which record climate during the last interglacial period, the late Holocene epoch and the present. We find an increased seasonality in the temperature recorded in the last interglacial coral. Today, climate in the northern Red Sea is sensitive to the North Atlantic Oscillation, a climate oscillation that strongly influences winter temperatures and precipitation in the North Atlantic region. From our coral records and simulations with a coupled atmosphere-ocean circulation model, we conclude that a tendency towards the high-index state of the North Atlantic Oscillation during the last interglacial period, which is consistent with European proxy records, contributed to the larger amplitude of the seasonal cycle in the Middle East.  相似文献   

12.
Lunt DJ  Foster GL  Haywood AM  Stone EJ 《Nature》2008,454(7208):1102-1105
It is thought that the Northern Hemisphere experienced only ephemeral glaciations from the Late Eocene to the Early Pliocene epochs (about 38 to 4 million years ago), and that the onset of extensive glaciations did not occur until about 3 million years ago. Several hypotheses have been proposed to explain this increase in Northern Hemisphere glaciation during the Late Pliocene. Here we use a fully coupled atmosphere-ocean general circulation model and an ice-sheet model to assess the impact of the proposed driving mechanisms for glaciation and the influence of orbital variations on the development of the Greenland ice sheet in particular. We find that Greenland glaciation is mainly controlled by a decrease in atmospheric carbon dioxide during the Late Pliocene. By contrast, our model results suggest that climatic shifts associated with the tectonically driven closure of the Panama seaway, with the termination of a permanent El Ni?o state or with tectonic uplift are not large enough to contribute significantly to the growth of the Greenland ice sheet; moreover, we find that none of these processes acted as a priming mechanism for glacial inception triggered by variations in the Earth's orbit.  相似文献   

13.
Dobson DP  Brodholt JP 《Nature》2005,434(7031):371-374
Ultralow-velocity zones (ULVZs) are regions of the Earth's core-mantle boundary about 1-10 kilometres thick exhibiting seismic velocities that are lower than radial-Earth reference models by about 10-20 per cent for compressional waves and 10-30 per cent for shear waves. It is also thought that such regions have an increased density of about 0-20 per cent (ref. 1). A number of origins for ULVZs have been proposed, such as ponding of dense silicate melt, core-mantle reaction zones or underside sedimentation from the core. Here we suggest that ULVZs might instead be relics of banded iron formations subducted to the core-mantle boundary between 2.8 and 1.8 billion years ago. Consisting mainly of interbedded iron oxides and silica, such banded iron formations were deposited in the world's oceans during the late Archaean and early Proterozoic eras. We argue that these layers, as part of the ocean floor, would be recycled into the Earth's interior by subduction, sink to the bottom of the mantle and may explain all of the observed features of ULVZs.  相似文献   

14.
Edgar KM  Wilson PA  Sexton PF  Suganuma Y 《Nature》2007,448(7156):908-911
Major ice sheets were permanently established on Antarctica approximately 34 million years ago, close to the Eocene/Oligocene boundary, at the same time as a permanent deepening of the calcite compensation depth in the world's oceans. Until recently, it was thought that Northern Hemisphere glaciation began much later, between 11 and 5 million years ago. This view has been challenged, however, by records of ice rafting at high northern latitudes during the Eocene epoch and by estimates of global ice volume that exceed the storage capacity of Antarctica at the same time as a temporary deepening of the calcite compensation depth approximately 41.6 million years ago. Here we test the hypothesis that large ice sheets were present in both hemispheres approximately 41.6 million years ago using marine sediment records of oxygen and carbon isotope values and of calcium carbonate content from the equatorial Atlantic Ocean. These records allow, at most, an ice budget that can easily be accommodated on Antarctica, indicating that large ice sheets were not present in the Northern Hemisphere. The records also reveal a brief interval shortly before the temporary deepening of the calcite compensation depth during which the calcite compensation depth shoaled, ocean temperatures increased and carbon isotope values decreased in the equatorial Atlantic. The nature of these changes around 41.6 million years ago implies common links, in terms of carbon cycling, with events at the Eocene/Oligocene boundary and with the 'hyperthermals' of the Early Eocene climate optimum. Our findings help to resolve the apparent discrepancy between the geological records of Northern Hemisphere glaciation and model results that indicate that the threshold for continental glaciation was crossed earlier in the Southern Hemisphere than in the Northern Hemisphere.  相似文献   

15.
Singh H  Chen Y  Staudt A  Jacob D  Blake D  Heikes B  Snow J 《Nature》2001,410(6832):1078-1081
The presence of oxygenated organic compounds in the troposphere strongly influences key atmospheric processes. Such oxygenated species are, for example, carriers of reactive nitrogen and are easily photolysed, producing free radicals-and so influence the oxidizing capacity and the ozone-forming potential of the atmosphere-and may also contribute significantly to the organic component of aerosols. But knowledge of the distribution and sources of oxygenated organic compounds, especially in the Southern Hemisphere, is limited. Here we characterize the tropospheric composition of oxygenated organic species, using data from a recent airborne survey conducted over the tropical Pacific Ocean (30 degrees N to 30 degrees S). Measurements of a dozen oxygenated chemicals (carbonyls, alcohols, organic nitrates, organic pernitrates and peroxides), along with several C2-C8 hydrocarbons, reveal that abundances of oxygenated species are extremely high, and collectively, oxygenated species are nearly five times more abundant than non-methane hydrocarbons in the Southern Hemisphere. Current atmospheric models are unable to correctly simulate these findings, suggesting that large, diffuse, and hitherto-unknown sources of oxygenated organic compounds must therefore exist. Although the origin of these sources is still unclear, we suggest that oxygenated species could be formed via the oxidation of hydrocarbons in the atmosphere, the photochemical degradation of organic matter in the oceans, and direct emissions from terrestrial vegetation.  相似文献   

16.
Meteoritic dust from the atmospheric disintegration of a large meteoroid   总被引:1,自引:0,他引:1  
Much of the mass of most meteoroids entering the Earth's atmosphere is consumed in the process of ablation. Larger meteoroids (> 10 cm), which in some cases reach the ground as meteorites, typically have survival fractions near 1-25 per cent of their initial mass. The fate of the remaining ablated material is unclear, but theory suggests that much of it should recondense through coagulation as nanometre-sized particles. No direct measurements of such meteoric 'smoke' have hitherto been made. Here we report the disintegration of one of the largest meteoroids to have entered the Earth's atmosphere during the past decade, and show that the dominant contribution to the mass of the residual atmospheric aerosol was in the form of micrometre-sized particles. This result is contrary to the usual view that most of the material in large meteoroids is efficiently converted to particles of much smaller size through ablation. Assuming that our observations are of a typical event, we suggest that large meteoroids provide the dominant source of micrometre-sized meteoritic dust at the Earth's surface over long timescales.  相似文献   

17.
Polar ocean stratification in a cold climate   总被引:1,自引:0,他引:1  
Sigman DM  Jaccard SL  Haug GH 《Nature》2004,428(6978):59-63
The low-latitude ocean is strongly stratified by the warmth of its surface water. As a result, the great volume of the deep ocean has easiest access to the atmosphere through the polar surface ocean. In the modern polar ocean during the winter, the vertical distribution of temperature promotes overturning, with colder water over warmer, while the salinity distribution typically promotes stratification, with fresher water over saltier. However, the sensitivity of seawater density to temperature is reduced as temperature approaches the freezing point, with potential consequences for global ocean circulation under cold climates. Here we present deep-sea records of biogenic opal accumulation and sedimentary nitrogen isotopic composition from the Subarctic North Pacific Ocean and the Southern Ocean. These records indicate that vertical stratification increased in both northern and southern high latitudes 2.7 million years ago, when Northern Hemisphere glaciation intensified in association with global cooling during the late Pliocene epoch. We propose that the cooling caused this increased stratification by weakening the role of temperature in polar ocean density structure so as to reduce its opposition to the stratifying effect of the vertical salinity distribution. The shift towards stratification in the polar ocean 2.7 million years ago may have increased the quantity of carbon dioxide trapped in the abyss, amplifying the global cooling.  相似文献   

18.
Sterzik MF  Bagnulo S  Palle E 《Nature》2012,483(7387):64-66
Low-resolution intensity spectra of Earth's atmosphere obtained from space reveal strong signatures of life ('biosignatures'), such as molecular oxygen and methane with abundances far from chemical equilibrium, as well as the presence of a 'red edge' (a sharp increase of albedo for wavelengths longer than 700?nm) caused by surface vegetation. Light passing through the atmosphere is strongly linearly polarized by scattering (from air molecules, aerosols and cloud particles) and by reflection (from oceans and land). Spectropolarimetric observations of local patches of Earth's sky light from the ground contain signatures of oxygen, ozone and water, and are used to characterize the properties of clouds and aerosols. When applied to exoplanets, ground-based spectropolarimetry can better constrain properties of atmospheres and surfaces than can standard intensity spectroscopy. Here we report disk-integrated linear polarization spectra of Earthshine, which is sunlight that has been first reflected by Earth and then reflected back to Earth by the Moon. The observations allow us to determine the fractional contribution of clouds and ocean surface, and are sensitive to visible areas of vegetation as small as 10 per cent. They represent a benchmark for the diagnostics of the atmospheric composition, mean cloud height and surfaces of exoplanets.  相似文献   

19.
Hyperactive antifreeze protein in a fish   总被引:1,自引:0,他引:1  
Marshall CB  Fletcher GL  Davies PL 《Nature》2004,429(6988):153
Fish that live in the polar oceans survive at low temperatures by virtue of 'antifreeze' plasma proteins in the blood that bind to ice crystals and prevent these from growing. However, the antifreeze proteins isolated so far from the winter flounder (Pleuronectes americanus), a common fish in the Northern Hemisphere, are not sufficiently active to protect it from freezing in icy sea water. Here we describe a previously undiscovered antifreeze protein from this flounder that is extremely active (as effective as those found in insects) and which explains the resistance of this fish to freezing in polar and subpolar waters.  相似文献   

20.
Rutberg RL  Hemming SR  Goldstein SL 《Nature》2000,405(6789):935-938
The global circulation of the oceans and the atmosphere transports heat around the Earth. Broecker and Denton suggested that changes in the global ocean circulation might have triggered or enhanced the glacial-interglacial cycles. But proxy data for past circulation taken from sediment cores in the South Atlantic Ocean have yielded conflicting interpretations of ocean circulation in glacial times--delta13C variations in benthic foraminifera support the idea of a glacial weakening or shutdown of North Atlantic Deep Water production, whereas other proxies, such as Cd/Ca, Ba/Ca and 231Pa/230Th ratios, show little change from the Last Glacial Maximum to the Holocene epoch. Here we report neodymium isotope ratios from the dispersed Fe-Mn oxide component of two southeast Atlantic sediment cores. Both cores show variations that tend towards North Atlantic signatures during the warm marine isotope stages 1 and 3, whereas for the full glacial stages 2 and 4 they are closer to Pacific Ocean signatures. We conclude that the export of North Atlantic Deep Water to the Southern Ocean has resembled present-day conditions during the warm climate intervals, but was reduced during the cold stages. An increase in biological productivity may explain the various proxy data during the times of reduced North Atlantic Deep Water export.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号